<rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>
  • 學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 各學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 > 高中三角函數(shù)的所有公式

    高中三角函數(shù)的所有公式

    時(shí)間: 澤慧0 分享

    高中三角函數(shù)的所有公式大全

    三角函數(shù)是數(shù)學(xué)中常見(jiàn)的一類關(guān)于角度的函數(shù)。也可以說(shuō)以角度為自變量,角度對(duì)應(yīng)任意兩邊的比值為因變量的函數(shù)叫三角函數(shù)。以下是小編為大家收集的關(guān)于高中三角函數(shù)的所有公式的相關(guān)內(nèi)容,供大家參考!

    高中三角函數(shù)的所有公式

    高中三角函數(shù)的所有公式大全

    兩角和公式

    sin(A+B) = sinAcosB+cosAsinB

    sin(A-B) = sinAcosB-cosAsinB

    cos(A+B) = cosAcosB-sinAsinB

    cos(A-B) = cosAcosB+sinAsinB

    tan(A+B) = (tanA+tanB)/(1-tanAtanB)

    tan(A-B) = (tanA-tanB)/(1+tanAtanB)

    cot(A+B) = (cotAcotB-1)/(cotB+cotA)

    cot(A-B) = (cotAcotB+1)/(cotB-cotA)

    倍角公式

    tan2A = 2tanA/(1-tan^2 A)

    Sin2A=2SinA?CosA

    Cos2A = Cos^2 A--Sin^2 A

    =2Cos^2 A—1

    =1—2sin^2 A

    三倍角公式

    sin3A = 3sinA-4(sinA)^3;

    cos3A = 4(cosA)^3 -3cosA

    tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

    半角公式

    sin(A/2) = √{(1--cosA)/2}

    cos(A/2) = √{(1+cosA)/2}

    tan(A/2) = √{(1--cosA)/(1+cosA)}

    cot(A/2) = √{(1+cosA)/(1-cosA)} ?

    tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

    和差化積

    sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]

    sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]

    cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]

    cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]

    tanA+tanB=sin(A+B)/cosAcosB

    積化和差

    sin(a)sin(b) = -1/2__[cos(a+b)-cos(a-b)]

    cos(a)cos(b) = 1/2__[cos(a+b)+cos(a-b)]

    sin(a)cos(b) = 1/2__[sin(a+b)+sin(a-b)]

    cos(a)sin(b) = 1/2__[sin(a+b)-sin(a-b)]

    誘導(dǎo)公式

    sin(-a) = -sin(a)

    cos(-a) = cos(a)

    sin(π/2-a) = cos(a)

    cos(π/2-a) = sin(a)

    sin(π/2+a) = cos(a)

    cos(π/2+a) = -sin(a)

    sin(π-a) = sin(a)

    cos(π-a) = -cos(a)

    sin(π+a) = -sin(a)

    cos(π+a) = -cos(a)

    tgA=tanA = sinA/cosA

    萬(wàn)能公式

    sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}

    cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}

    tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}

    其它公式

    a?sin(a)+b?cos(a) = [√(a^2+b^2)]__sin(a+c) [其中,tan(c)=b/a]

    a?sin(a)-b?cos(a) = [√(a^2+b^2)]__cos(a-c) [其中,tan(c)=a/b]

    1+sin(a) = [sin(a/2)+cos(a/2)]^2;

    1-sin(a) = [sin(a/2)-cos(a/2)]^2;;

    其他非重點(diǎn)三角函數(shù)

    csc(a) = 1/sin(a)

    sec(a) = 1/cos(a)

    三角函數(shù)的基本公式

    一、倍角公式

    1、Sin2A=2SinA__CosA

    2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

    3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))

    二、降冪公式

    1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2

    2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2

    3、tan^2(α)=(1-cos(2α))/(1+cos(2α))

    三、推導(dǎo)公式

    1、1tanα+cotα=2/sin2α

    2、tanα-cotα=-2cot2α

    3、1+cos2α=2cos^2α

    4、4-cos2α=2sin^2α

    5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina

    四、兩角和差

    1、1cos(α+β)=cosα·cosβ-sinα·sinβ

    2、cos(α-β)=cosα·cosβ+sinα·sinβ

    3、sin(α±β)=sinα·cosβ±cosα·sinβ

    4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

    5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

    三角函數(shù)的8個(gè)誘導(dǎo)公式是什么

    1. 正弦函數(shù)的誘導(dǎo)公式

    sin(-x) = -sin(x)

    這個(gè)公式表明,正弦函數(shù)的值在x軸上是關(guān)于原點(diǎn)對(duì)稱的。也就是說(shuō),如果一個(gè)角度的正弦值為a,那么它的相反數(shù)的正弦值就是-a。這個(gè)公式在解三角形問(wèn)題時(shí)非常有用,為它可以幫助我們計(jì)算負(fù)角度的正弦值。

    2. 余弦函數(shù)的誘導(dǎo)公式

    cos(-x) = cos(x)

    這個(gè)公式表明,余弦函數(shù)的值在y軸上是關(guān)于原點(diǎn)對(duì)稱的。也就是說(shuō),如果一個(gè)角度的余弦值為a,那么它的相反數(shù)的余弦值也是a。這個(gè)公式同樣也可以幫助我們計(jì)算負(fù)角的余弦值。

    3. 正切函數(shù)的誘導(dǎo)公式

    tan(-x) = -tan(x)

    這個(gè)公式表明,正切函數(shù)的值在原點(diǎn)上是關(guān)于y軸對(duì)稱的。也就是說(shuō),如果一個(gè)角的正切值為a,那么它的相反數(shù)的正切值就是-a。這個(gè)公式在計(jì)算負(fù)角的正切值時(shí)非常有用。

    4. 余切函數(shù)的誘導(dǎo)公式

    cot(-x) = -cot(x)

    這個(gè)公式表明,余切函數(shù)的值在原點(diǎn)上是關(guān)于x軸對(duì)稱的。也就是說(shuō),如果一個(gè)角的余切值為a,那么它的相反數(shù)的余切值就是-a。這個(gè)公式同樣也可以幫助我們計(jì)算負(fù)角的余切值。

    5. 正弦函數(shù)的平方的誘導(dǎo)公式

    sin^2(x) + cos^2(x) = 1

    這個(gè)公式是三角函數(shù)中最著名的公式之一,它表明正弦函數(shù)的平方加上余弦函數(shù)的平方等于1。這個(gè)公式在解三角形問(wèn)題時(shí)非常有用,為它可以幫助我們計(jì)算三角形中的未知邊長(zhǎng)。

    6. 正切函數(shù)的平方的誘導(dǎo)公式

    tan^2(x) + 1 = sec^2(x)

    這個(gè)公式表明,正切函數(shù)的平方加1等于其對(duì)應(yīng)的正割函數(shù)的平方。這個(gè)公式在計(jì)算三角形中的未知邊長(zhǎng)時(shí)非常有用。

    7. 余切函數(shù)的平方的誘導(dǎo)公式

    cot^2(x) + 1 = csc^2(x)

    這個(gè)公式表明,余切函數(shù)的平方加1等于其對(duì)應(yīng)的余割函數(shù)的平方。這個(gè)公式同樣也可以幫助我們計(jì)算三角形中的未知邊長(zhǎng)。

    8. 正弦函數(shù)和余弦函數(shù)的誘導(dǎo)公式

    sin(x + π/2) = cos(x)

    cos(x + π/2) = -sin(x)

    這兩個(gè)公式表明,正弦函數(shù)和余弦函數(shù)之間存在一種特殊的關(guān)系,即它們的相位差為π/2。這個(gè)公式在計(jì)算三角函數(shù)的復(fù)合函數(shù)時(shí)非常有用。

    三角函數(shù)記憶口訣

    “奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號(hào)看象限”的含義是:

    把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號(hào)還是負(fù)號(hào)。

    以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號(hào)為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號(hào)為負(fù),所以右邊為-sinα。

    符號(hào)判斷口訣:

    全,S,T,C,正。這五個(gè)字口訣的意思就是說(shuō):第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。

    也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對(duì)應(yīng)象限三角函數(shù)為正值的名稱??谠E中未提及的都是負(fù)值。

    “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過(guò)來(lái)寫(xiě)所占的象限對(duì)應(yīng)的三角函數(shù)為正值。

    另一種口訣:正弦一二切一三,余弦一四緊相連,言之為正。

    三角函數(shù)都包括有哪些?

    三角函數(shù)包括正弦函數(shù)、余弦函數(shù)和正切函數(shù)。

    在航海學(xué)、測(cè)繪學(xué)、工程學(xué)等其他學(xué)科中,還會(huì)用到如余切函數(shù)、正割函數(shù)、余割函數(shù)、正矢函數(shù)、余矢函數(shù)、半正矢函數(shù)、半余矢函數(shù)等其他的三角函數(shù)。

    三角函數(shù)和三角函數(shù)有什么區(qū)別

    三角函數(shù)與三角函數(shù)公式有區(qū)別也有聯(lián)系。

    區(qū)別是:三角函數(shù)通常指直角三角形中三個(gè)內(nèi)角A、B、C的度數(shù)與它們的對(duì)邊a、b、c的關(guān)系,即正弦、余弦、正切等,這些在三角形的三個(gè)頂點(diǎn)上各有一個(gè)交點(diǎn),統(tǒng)稱為三角函數(shù)。而三角函數(shù)公式則表示在三角形中,三個(gè)內(nèi)角A、B、C和它們的對(duì)邊a、b、c之間的等量關(guān)系,如正弦定理、余弦定理、勾股定理等,這些公式可以用來(lái)解決很多關(guān)于三角形的問(wèn)題。

    聯(lián)系是:三角函數(shù)是基礎(chǔ),三角函數(shù)公式是應(yīng)用。在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,只有掌握了基礎(chǔ)概念,才能更好地理解和運(yùn)用相關(guān)的公式和定理。

    2136659
    亚洲色欲在线播放一区,日韩黄色在线观看无遮挡,九一无码中文字幕久久无码,亚洲中文字幕在线第二页 亚洲国产综合精品中文第一区 2022国产日韩中文无码
    <rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>