高一的數(shù)學九大解題技巧
上了高一,我的數(shù)學怎么了?我想這可能是很多同學心頭都有的大大疑惑,同時也是各位家長深感無助的問題,初中和高中的數(shù)學還是有些許不同的,下面給大家分享一些關于高一的數(shù)學九大解題技巧,希望對大家有所幫助。
高一的數(shù)學九大解題技巧
1、配法
通過把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式解決數(shù)學問題的方法,叫配方法。配方法用的最多的是配成完全平方式,它是數(shù)學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式,是恒等變形的基礎,它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學中一個非常重要而且應用十分廣泛的解題方法。通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達定理
一元二次方程ax2bxc=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數(shù)法
在解數(shù)學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設條件列出關于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。
6、構造法
在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構造法。運用構造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。
7、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數(shù)量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
8、幾何變換法
在數(shù)學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數(shù)學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數(shù)學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
9、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發(fā),經(jīng)過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
高一怎么學好數(shù)學
理解老師講解的內容
學生對教師所講的內容的理解,還沒能達到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關內容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區(qū)別。尤其練習題不太配套時,作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。
學會做題
要把課本,筆記,區(qū)單元測驗試卷,校周末測驗試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標記,標明哪些是過一會兒要摘錄的。要養(yǎng)成一個習慣,在讀材料時隨時做標記,告訴自己下次再讀這份材料時的閱讀重點。長期保持這個習慣,學生就能由博反約,把厚書讀成薄書。積累起自己的獨特的,也就是最適合自己進行復習的材料。這樣積累起來的資料才有活力,才能用的上。
整理資料
要注意積累復習資料。把課堂筆記,練習,區(qū)單元測驗,各種試卷,都分門別類按時間順序整理好。每讀一次,就在上面標記出自己下次閱讀時的重點內容。這樣,復習資料才能越讀越精,一目了然。
高一提高數(shù)學成績三大妙法
一、思路思想提煉法:催生解題靈感沒有解題思想,就沒有解題靈感。有了解題思想,解題思如泉涌。但解題思想對很多學生來說是既熟悉又陌生。熟悉是因為教師每天掛在嘴邊,陌生就是說不請它究竟是什么。在老師的指導下,結合典型的數(shù)學題目,可以快速掌握。
二、典型題型精熟法:抓準重點考點管理學的二八法則說:20%的重要工作產(chǎn)生80%的效果,而80%的瑣碎工作只產(chǎn)生20%的效果。數(shù)學學習上也有同樣現(xiàn)象:20%的題目(重點、考點集中的題目)對于考試成績起到了80%的貢獻。因此,提高數(shù)學成績,必須優(yōu)先抓住那20%的題目。針對許多學生題目解答多,研究得不透的現(xiàn)象,當通過科學用腦,達到每個章節(jié)的典型題型都胸有成竹時,解起題來就得心應手。
三、逐步深入糾錯法:鞏固薄弱環(huán)節(jié)管理學上的木桶理論說:一只水桶盛水多少由最短板決定,而不是由最長板決定。學數(shù)學也是這樣,數(shù)學考試成績往往會因為某些薄弱環(huán)節(jié)大受影響。因此鞏固某個薄弱環(huán)節(jié),比做對一百道題更重要。
高一的數(shù)學九大解題技巧相關文章:
★ 高中數(shù)學3個解題技巧口訣與數(shù)學學習方法
高一的數(shù)學九大解題技巧
上一篇:高一的數(shù)學做筆記方法