高一函數(shù)的性質(zhì)知識點總結
人們很難接受與已有知識和經(jīng)驗相左的信息或觀念,因為一個人已有的知識和觀念都是經(jīng)過反復篩選的,下面給大家分享一些關于高一函數(shù)的性質(zhì)知識點總結,希望對大家有所幫助。
1.函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(-x) ;
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則 f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);
(4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2.復合函數(shù)的有關問題
(1)復合函數(shù)定義域求法:若已知 的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復合函數(shù)的單調(diào)性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;
(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關于直線x= 對稱;
4.函數(shù)的周期性
(1)y=f(x)對x∈R時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);
(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數(shù);
(5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2 的周期函數(shù);
(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數(shù);
5.方程
(1)方程k=f(x)有解 k∈D(D為f(x)的值域);
(2)a≥f(x) 恒成立 a≥[f(x)]max,;
a≤f(x) 恒成立 a≤[f(x)]min;
(3)(a>0,a≠1,b>0,n∈R+);
log a N= ( a>0,a≠1,b>0,b≠1);
(4)log a b的符號由口訣“同正異負”記憶;
a log a N= N ( a>0,a≠1,N>0 );
6.映射
判斷對應是否為映射時,抓住兩點:
(1)A中元素必須都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
7.函數(shù)單調(diào)性
(1)能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性;
(2)依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題
8.反函數(shù)
對于反函數(shù),應掌握以下一些結論:
(1)定義域上的單調(diào)函數(shù)必有反函數(shù);
(2)奇函數(shù)的反函數(shù)也是奇函數(shù);
(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);
(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;
(5) y=f(x)與y=f-1(x)互為反函數(shù),設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
9.數(shù)形結合
處理二次函數(shù)的問題勿忘數(shù)形結合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關系.
10.恒成立問題
恒成立問題的處理方法:
(1)分離參數(shù)法;
(2)轉化為一元二次方程的根的分布列不等式(組)求解;
高一函數(shù)的性質(zhì)知識點總結相關文章: