高中數(shù)學(xué)解題方法與思路
掌握高中數(shù)學(xué)解題方法與技巧是學(xué)好高中數(shù)學(xué)的重點。美國著名數(shù)學(xué)教育家波利亞說過,掌握數(shù)學(xué)就以為著要善于解題。而當(dāng)我們解題時遇到一個新問題,總想用熟悉的題型去“套”,這只是滿足于解出來,只有對數(shù)學(xué)思想、數(shù)學(xué)方法理解透徹及融會貫通時,才能提出新看法、巧解法。下面是小編為大家整理的關(guān)于高中數(shù)學(xué)解題方法與思路,希望對您有所幫助。歡迎大家閱讀參考學(xué)習(xí)!
一、20種高中數(shù)學(xué)解題方法
1、不等式、方程或函數(shù)的題型,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
2、在研究含有參數(shù)的初等函數(shù)的時候應(yīng)該抓住無論參數(shù)怎么變化一些性質(zhì)都不變的特點。如函數(shù)過的定點、二次函數(shù)的對稱軸等。
3、在求零點的函數(shù)中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法。
4、恒成立問題中,可以轉(zhuǎn)化成最值問題或者二次函數(shù)的恒成立可以利用二次函數(shù)的圖像性質(zhì)來解決,靈活使用函數(shù)閉區(qū)間上的最值,分類討論的思想(在分類討論中應(yīng)注意不重復(fù)不遺漏)。
5、選擇與填空中出現(xiàn)不等式的題,應(yīng)優(yōu)先選特殊值法。
6、在利用距離的幾何意義求最值得問題中,應(yīng)首先考慮兩點之間線段最短,常用次結(jié)論來求距離和的最小值;三角形的兩邊之差小于第三邊,常用此結(jié)論來求距離差的最大值。
7、求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的不等式或者是等式,用函數(shù)的值域或定義域或者是解不等式來完成,在對式子變形的過程中,應(yīng)優(yōu)先選擇分離參數(shù)的方法。
8、在解三角形的題目中,已知三個條件一定能求出其他未知的條件,簡稱“知三求一“。
9、求雙曲線或者橢圓的離心率時,建立關(guān)于a、b、c之間的關(guān)系等式即可。
10、解三角形時,首先確認所求邊角所在的三角形及已知邊角所在的三角形,從而選擇合適的三角形及定理。
11、在數(shù)列的五個量中:中,只要知道三個量就可以求出另外兩個量,簡稱“知三求二”。
12、圓錐曲線的題目應(yīng)優(yōu)先選擇他們的定義完成,而直線與圓錐曲線相交的問題,若與弦的中點有關(guān),選擇設(shè)而不求點差法,與弦的中點無關(guān),選擇韋達定理公式法(使用韋達定理首先要考慮二次函數(shù)方程是否有根即:二次函數(shù)的判別式)。
13、求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點、列式、化簡。
14、在求離心率時關(guān)鍵是從題目條件中找到關(guān)于a、b、c的兩個方程或由題目得到的圖形中找到a、b、c的關(guān)系式,從而求離心率或離心率的取值范圍。
15、三角函數(shù)求最值、周期或者單調(diào)區(qū)間,應(yīng)優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;與向量聯(lián)系的題目,注意向量角的范圍;解三角形的題目,重視內(nèi)角和定理的使用。
16、立體幾何的第一問如果是為建系服務(wù)的,一定用傳統(tǒng)做法做(例如平行應(yīng)想到平行四邊形或三角形的中位線,垂直的應(yīng)想到勾股定理的逆定理或者等腰三角形等);如果不是,那么可以在第一問就開始建立直角坐標(biāo)系來解決。
17、利用導(dǎo)數(shù)解決存在性的問題需要構(gòu)造函數(shù),但選取函數(shù)的最值不同。注意“恒成立”與“存在”的區(qū)別,“在某區(qū)間上,存在使f(x)m成立”,即函數(shù)f(x)的最大值大于或等于m;“在某區(qū)間上,存在x使f(x)m成立”,即函數(shù)f(x)的最小值小于或等于m。
18、概率的題目如果出解答題,應(yīng)該首先設(shè)事件,然后寫出使用公式的理由,當(dāng)然要注意步驟的多少決定解答的詳略;如果有分布列,則概率和為1是檢驗正確與否的重要途徑。
19、注意概率分布中的二項分布,二項式定理中的通項公式的使用與賦值的方法,全稱與特稱命題的否定寫法,排列組合中的枚舉法,取值范圍或是不等式的解得端點能否取到需要單獨驗證,用點斜式或者斜截式方程的時候要考慮斜率是否存在等。
20、解決參數(shù)方程的一個基本思路是將其轉(zhuǎn)化為普通方程,然后在直角坐標(biāo)系下解決問題。
二、五大解題思想
數(shù)學(xué)思想是對數(shù)學(xué)知識和方法的本質(zhì)認識,數(shù)學(xué)方法是解決數(shù)學(xué)問題、體現(xiàn)數(shù)學(xué)思想的手段和工具,數(shù)學(xué)思想方法的教學(xué)在數(shù)學(xué)教學(xué)中是極其重要的。因此學(xué)生在做題的時候不僅僅只局限于做題,而是要考慮這道題考的是什么思想用的什么方法,即做一道題會一類題。
1、特殊與一般的思想
用這種思想解選擇題有事特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據(jù)這一點,同學(xué)們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的解題策略,也同樣有用。
2、數(shù)形結(jié)合思想
中學(xué)數(shù)學(xué)研究的對象可分為兩大類:一類是數(shù)、一類是形,但數(shù)與形是有聯(lián)系的,這個聯(lián)系稱之為形數(shù)結(jié)合或者數(shù)形結(jié)合。它既是尋找問題解決切入點的“法寶”,有事優(yōu)化解題途徑的“良方”,因此建議同學(xué)們在解答數(shù)學(xué)題時,能畫圖的盡量畫出圖形,以利用正確地理解題意、快速地解決問題。
3、函數(shù)與方程思想
函數(shù)思想是指運用運動變化的觀點,分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系運用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;方程思想,是從問題的數(shù)量關(guān)系入手,運用數(shù)學(xué)語言將問題轉(zhuǎn)化為方程或不等式模型去解決問題。同學(xué)們在解題時可利用轉(zhuǎn)化思想進行函數(shù)與方程間的相互轉(zhuǎn)化。
4、分類討論思想
同學(xué)們在解題時常常會遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進行下去,這是因為被研究的對象包含了多種情況,這就需要對各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學(xué)概念本身具有多種情形,公式的限制、某些定理、數(shù)學(xué)運算法則,圖形位置的不確定性,變化等均可能一起分類討論。建議同學(xué)們在分類討論解題時,要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。
5、極限思想解題步驟
極限思想解決問題的一般步驟為:一、對于所求的位置量,先設(shè)法構(gòu)思一個與它有關(guān)的變量;二、確認這變量通過無限過程的結(jié)果就是所求的未知量;三、構(gòu)造函數(shù)(數(shù)列)并利用極限計算法則得出結(jié)果或利用圖形的極限位置直接計算結(jié)果。
相關(guān)文章:
1.高三備考:最全高中數(shù)學(xué)解題方法與答題注意事項
2.高中數(shù)學(xué)六種解題技巧與五種數(shù)學(xué)答題思路