<rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>
  • 學習啦 > 學習方法 > 高中學習方法 > 高一學習方法 > 高一數(shù)學 > 最新高一數(shù)學知識點總結大全

    最新高一數(shù)學知識點總結大全

    時間: 維維4594 分享

    最新高一數(shù)學知識點總結整理大全

    數(shù)學是我們我們從小學到大的一門學科,如果能認認真真學下來,數(shù)學并不難,只是數(shù)學要下苦功去學,學會了很有意思。這次小編給大家整理了高一數(shù)學知識點總結,供大家閱讀參考。

    最新高一數(shù)學知識點總結大全

    高一數(shù)學知識點總結

    I.定義與定義表達式

    一般地,自變量x和因變量y之間存在如下關系:

    y=ax^2+bx+c

    (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

    則稱y為x的二次函數(shù)。

    二次函數(shù)表達式的右邊通常為二次三項式。

    II.二次函數(shù)的三種表達式

    一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

    頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

    交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

    注:在3種形式的互相轉化中,有如下關系:

    h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

    III.二次函數(shù)的圖像

    在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,

    可以看出,二次函數(shù)的圖像是一條拋物線。

    IV.拋物線的性質

    1.拋物線是軸對稱圖形。對稱軸為直線

    x=-b/2a。

    對稱軸與拋物線的交點為拋物線的頂點P。

    特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

    2.拋物線有一個頂點P,坐標為

    P(-b/2a,(4ac-b^2)/4a)

    當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

    3.二次項系數(shù)a決定拋物線的開口方向和大小。

    當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

    |a|越大,則拋物線的開口越小。

    4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

    當a與b同號時(即ab>0),對稱軸在y軸左;

    當a與b異號時(即ab<0),對稱軸在y軸右。

    5.常數(shù)項c決定拋物線與y軸交點。

    拋物線與y軸交于(0,c)

    6.拋物線與x軸交點個數(shù)

    Δ=b^2-4ac>0時,拋物線與x軸有2個交點。

    Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

    Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

    高一數(shù)學知識點

    1.函數(shù)的奇偶性

    (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

    (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

    (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

    (4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;

    (5)奇函數(shù)在對稱的單調區(qū)間內(nèi)有相同的單調性;偶函數(shù)在對稱的單調區(qū)間內(nèi)有相反的單調性;

    2.復合函數(shù)的有關問題

    (1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

    (2)復合函數(shù)的單調性由“同增異減”判定;

    3.函數(shù)圖像(或方程曲線的對稱性)

    (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

    (2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

    (3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

    (4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

    (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;

    (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱;

    4.函數(shù)的周期性

    (1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

    (2)若y=f(x)是偶函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

    (3)若y=f(x)奇函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

    (4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

    (5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

    (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

    5.方程k=f(x)有解k∈D(D為f(x)的值域);

    a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

    (1)(a>0,a≠1,b>0,n∈R+);

    (2)logaN=(a>0,a≠1,b>0,b≠1);

    (3)logab的符號由口訣“同正異負”記憶;

    (4)alogaN=N(a>0,a≠1,N>0);

    6.判斷對應是否為映射時,抓住兩點:

    (1)A中元素必須都有象且;

    (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

    7.能熟練地用定義證明函數(shù)的單調性,求反函數(shù),判斷函數(shù)的奇偶性。

    8.對于反函數(shù),應掌握以下一些結論:

    (1)定義域上的單調函數(shù)必有反函數(shù);

    (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

    (3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);

    (4)周期函數(shù)不存在反函數(shù);

    (5)互為反函數(shù)的兩個函數(shù)具有相同的單調性;

    (6)y=f(x)與y=f-1(x)互為反函數(shù),設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

    9.處理二次函數(shù)的問題勿忘數(shù)形結合

    二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關系;

    10.依據(jù)單調性

    利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題;

    數(shù)學知識點總結

    冪函數(shù)的性質:

    對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

    首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

    排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

    排除了為0這種可能,即對于x<0x="">0的所有實數(shù),q不能是偶數(shù);

    排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

    總結起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

    如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

    在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

    在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

    而只有a為正數(shù),0才進入函數(shù)的值域。

    由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

    可以看到:

    (1)所有的圖形都通過(1,1)這點。

    (2)當a大于0時,冪函數(shù)為單調遞增的,而a小于0時,冪函數(shù)為單調遞減函數(shù)。

    (3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。

    (4)當a小于0時,a越小,圖形傾斜程度越大。

    (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

    (6)顯然冪函數(shù)無界。

    解題方法:換元法

    解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法.換元的實質是轉化,關鍵是構造元和設元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。

    換元法又稱輔助元素法、變量代換法.通過引進新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結論聯(lián)系起來.或者變?yōu)槭煜さ男问剑褟碗s的計算和推證簡化。

    它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應用。

    學習數(shù)學小竅門

    建立數(shù)學糾錯本。

    把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。

    限時訓練。

    可以找一組題(比如10道選擇題),爭取限定一個時間完成;也可以找1道大題,限時完成。這主要是創(chuàng)設一種考試情境,檢驗自己在緊張狀態(tài)下的思維水平。

    調整心態(tài),正確對待考試。

    首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。

    最新高一數(shù)學知識點總結大全相關文章:

    高一數(shù)學知識點復習歸納

    高一數(shù)學必備知識點總結

    高一數(shù)學必會必備知識點總結歸納

    高一數(shù)學知識點(考前必看)

    高一數(shù)學重要知識點整理

    高一學期數(shù)學基本知識點歸納

    高中數(shù)學知識點:平面向量的公式的知識點總結

    高一數(shù)學必修一知識點整理大全

    36207 亚洲色欲在线播放一区,日韩黄色在线观看无遮挡,九一无码中文字幕久久无码,亚洲中文字幕在线第二页 亚洲国产综合精品中文第一区 2022国产日韩中文无码
    <rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>