<rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>
  • 學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

    高一數(shù)學(xué)知識(shí)點(diǎn)框架

    時(shí)間: 舒淇4599 分享

    高一新生要作好充分思想準(zhǔn)備,以自信、寬容的心態(tài),盡快融入集體,去適應(yīng)新同學(xué)、適應(yīng)新校園環(huán)境、適應(yīng)與初中迥異的紀(jì)律制度。下面小編為大家?guī)?lái)高一數(shù)學(xué)知識(shí)點(diǎn)框架,希望對(duì)您有所幫助!

    高一數(shù)學(xué)知識(shí)點(diǎn)框架

    冪函數(shù)定義:

    形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞?,指?shù)為常量的函數(shù)稱為冪函數(shù)。

    定義域和值域:

    當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

    冪函數(shù)性質(zhì):

    對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:

    首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

    排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

    排除了為0這種可能,即對(duì)于x

    排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

    總結(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:

    如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

    如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

    在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

    在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

    而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

    由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

    可以看到:

    (1)所有的圖形都通過(guò)(1,1)這點(diǎn)。

    (2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

    (3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

    (4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

    (5)a大于0,函數(shù)過(guò)(0,0);a小于0,函數(shù)不過(guò)(0,0)點(diǎn)。

    (6)顯然冪函數(shù)無(wú)_。

    高一數(shù)學(xué)知識(shí)點(diǎn)筆記

    一、集合有關(guān)概念

    1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

    2、集合的中元素的三個(gè)特性:

    1.元素的確定性;

    2.元素的互異性;

    3.元素的無(wú)序性

    說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

    (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

    (3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

    (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

    3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋大西洋印度洋北冰洋}

    1.用拉丁字母表示集合:A={我校的籃球隊(duì)員}B={12345}

    2.集合的表示方法:列舉法與描述法。

    注意啊:常用數(shù)集及其記法:

    非負(fù)整數(shù)集(即自然數(shù)集)記作:N

    正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

    關(guān)于“屬于”的概念

    集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A

    列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。

    描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。

    ①語(yǔ)言描述法:例:{不是直角三角形的三角形}

    ②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

    4、集合的分類:

    1.有限集含有有限個(gè)元素的集合

    2.無(wú)限集含有無(wú)限個(gè)元素的集合

    3.空集不含任何元素的集合例:{x|x2=-5}

    二、集合間的基本關(guān)系

    1.“包含”關(guān)系子集

    注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

    反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA

    2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

    實(shí)例:設(shè)A={x|x2-1=0}B={-11}“元素相同”

    結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

    ①任何一個(gè)集合是它本身的子集。A?A

    ②真子集:如果A?B且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

    ③如果A?BB?C那么A?C

    ④如果A?B同時(shí)B?A那么A=B

    3.不含任何元素的集合叫做空集,記為Φ

    規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

    三、集合的運(yùn)算

    1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集.

    記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

    2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

    3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A

    A∪φ=AA∪B=B∪A.

    4、全集與補(bǔ)集

    (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

    記作:CSA即CSA={x?x?S且x?A}

    (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。

    (3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

    (1)直線的傾斜角

    定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

    (2)直線的斜率

    ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

    ②過(guò)兩點(diǎn)的直線的斜率公式:

    注意下面四點(diǎn):

    (1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;

    (2)k與P1、P2的順序無(wú)關(guān);

    (3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

    (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

    (3)直線方程

    ①點(diǎn)斜式:直線斜率k,且過(guò)點(diǎn)

    注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

    ②斜截式:,直線斜率為k,直線在y軸上的截距為b

    ③兩點(diǎn)式:()直線兩點(diǎn),

    ④截矩式:其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

    ⑤一般式:(A,B不全為0)

    ⑤一般式:(A,B不全為0)

    注意:○1各式的適用范圍

    ○2特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

    (4)直線系方程:即具有某一共同性質(zhì)的直線

    1616092
    亚洲色欲在线播放一区,日韩黄色在线观看无遮挡,九一无码中文字幕久久无码,亚洲中文字幕在线第二页 亚洲国产综合精品中文第一区 2022国产日韩中文无码
    <rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>