<rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>
  • 學習啦 > 學習方法 > 高中學習方法 > 高一學習方法 > 高一數(shù)學 > 高一數(shù)學知識點總結(jié)最新

    高一數(shù)學知識點總結(jié)最新

    時間: 楚琪0 分享

    高一數(shù)學知識點總結(jié)最新2022

    函數(shù)是數(shù)學學習里的重點內(nèi)容,高一要學好數(shù)學首先要掌握好最基礎的知識。你們高一有什么好的學習方法嗎?下面是小編給大家?guī)淼母咭粩?shù)學知識點總結(jié)最新,以供大家參考!

    高一數(shù)學知識點總結(jié)最新

    【(一)、映射、函數(shù)、反函數(shù)】

    1、對應、映射、函數(shù)三個概念既有共性又有區(qū)別,映射是一種特殊的對應,而函數(shù)又是一種特殊的映射.

    2、對于函數(shù)的概念,應注意如下幾點:

    (1)掌握構(gòu)成函數(shù)的三要素,會判斷兩個函數(shù)是否為同一函數(shù).

    (2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數(shù)關系式,特別是會求分段函數(shù)的解析式.

    (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù).

    3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

    (1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

    (2)由y=f(x)的解析式求出x=f-1(y);

    (3)將x,y對換,得反函數(shù)的習慣表達式y(tǒng)=f-1(x),并注明定義域.

    注意①:對于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.

    ②熟悉的應用,求f-1(x0)的值,合理利用這個結(jié)論,可以避免求反函數(shù)的過程,從而簡化運算.

    【(二)、函數(shù)的解析式與定義域】

    1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對應法則的同時,求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類型:

    (1)有時一個函數(shù)來自于一個實際問題,這時自變量x有實際意義,求定義域要結(jié)合實際意義考慮;

    (2)已知一個函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:

    ①分式的分母不得為零;

    ②偶次方根的被開方數(shù)不小于零;

    ③對數(shù)函數(shù)的真數(shù)必須大于零;

    ④指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

    ⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.

    應注意,一個函數(shù)的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集).

    (3)已知一個函數(shù)的定義域,求另一個函數(shù)的定義域,主要考慮定義域的深刻含義即可.

    已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域.

    2、求函數(shù)的解析式一般有四種情況

    (1)根據(jù)某實際問題需建立一種函數(shù)關系時,必須引入合適的變量,根據(jù)數(shù)學的有關知識尋求函數(shù)的解析式.

    (2)有時題設給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設條件,列出方程組,求出a,b即可.

    (3)若題設給出復合函數(shù)f[g(x)]的表達式時,可用換元法求函數(shù)f(x)的表達式,這時必須求出g(x)的值域,這相當于求函數(shù)的定義域.

    (4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達式.

    【(三)、函數(shù)的值域與最值】

    1、函數(shù)的值域取決于定義域和對應法則,不論采用何種方法求函數(shù)值域都應先考慮其定義域,求函數(shù)值域常用方法如下:

    (1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應用不等式的性質(zhì),直接觀察得出函數(shù)的值域.

    (2)換元法:運用代數(shù)式或三角換元將所給的復雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當根式里一次式時用代數(shù)換元,當根式里是二次式時,用三角換元.

    (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.

    (4)配方法:對于二次函數(shù)或二次函數(shù)有關的函數(shù)的值域問題可考慮用配方法.

    (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧.

    (6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

    (7)利用函數(shù)的單調(diào)性求值域:當能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.

    (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.

    2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

    求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異.

    如函數(shù)的值域是(0,16],值是16,無最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2.可見定義域?qū)瘮?shù)的值域或最值的影響.

    3、函數(shù)的最值在實際問題中的應用

    函數(shù)的最值的應用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現(xiàn)實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值.

    【(四)、函數(shù)的奇偶性】

    1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).

    正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點:(1)定義域在數(shù)軸上關于原點對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).

    2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時需要將函數(shù)化簡或應用定義的等價形式:

    注意如下結(jié)論的運用:

    (1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);

    (2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

    (3)奇偶函數(shù)的復合函數(shù)的奇偶性通常是偶函數(shù);

    (4)奇函數(shù)的導函數(shù)是偶函數(shù),偶函數(shù)的導函數(shù)是奇函數(shù)。

    3、有關奇偶性的幾個性質(zhì)及結(jié)論

    (1)一個函數(shù)為奇函數(shù)的充要條件是它的圖象關于原點對稱;一個函數(shù)為偶函數(shù)的充要條件是它的圖象關于y軸對稱.

    (2)如要函數(shù)的定義域關于原點對稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù).

    (3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立.

    (4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負對稱區(qū)間上的單調(diào)性是相同(反)的。

    (5)若f(x)的定義域關于原點對稱,則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù).

    (6)奇偶性的推廣

    函數(shù)y=f(x)對定義域內(nèi)的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關于直線x=a對稱,即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對定義域內(nèi)的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關于點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數(shù)。

    【(五)、函數(shù)的單調(diào)性】

    1、單調(diào)函數(shù)

    對于函數(shù)f(x)定義在某區(qū)間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調(diào)遞增(或遞減);增函數(shù)或減函數(shù)統(tǒng)稱為單調(diào)函數(shù).

    對于函數(shù)單調(diào)性的定義的理解,要注意以下三點:

    (1)單調(diào)性是與“區(qū)間”緊密相關的概念.一個函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性.

    (2)單調(diào)性是函數(shù)在某一區(qū)間上的“整體”性質(zhì),因此定義中的x1,x2具有任意性,不能用特殊值代替.

    (3)單調(diào)區(qū)間是定義域的子集,討論單調(diào)性必須在定義域范圍內(nèi).

    (4)注意定義的兩種等價形式:

    設x1、x2∈[a,b],那么:

    ①在[a、b]上是增函數(shù);

    在[a、b]上是減函數(shù).

    ②在[a、b]上是增函數(shù).

    在[a、b]上是減函數(shù).

    需要指出的是:①的幾何意義是:增(減)函數(shù)圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零.

    (5)由于定義都是充要性命題,因此由f(x)是增(減)函數(shù),且(或x1>x2),這說明單調(diào)性使得自變量間的不等關系和函數(shù)值之間的不等關系可以“正逆互推”.

    5、復合函數(shù)y=f[g(x)]的單調(diào)性

    若u=g(x)在區(qū)間[a,b]上的單調(diào)性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調(diào)性相同,則復合函數(shù)y=f[g(x)]在[a,b]上單調(diào)遞增;否則,單調(diào)遞減.簡稱“同增、異減”.

    在研究函數(shù)的單調(diào)性時,常需要先將函數(shù)化簡,轉(zhuǎn)化為討論一些熟知函數(shù)的單調(diào)性。因此,掌握并熟記一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,將大大縮短我們的判斷過程.

    6、證明函數(shù)的單調(diào)性的方法

    (1)依定義進行證明.其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據(jù)定義,得出結(jié)論.

    (2)設函數(shù)y=f(x)在某區(qū)間內(nèi)可導.

    如果f′(x)>0,則f(x)為增函數(shù);如果f′(x)<0,則f(x)為減函數(shù).

    【(六)、函數(shù)的圖象】

    函數(shù)的圖象是函數(shù)的直觀體現(xiàn),應加強對作圖、識圖、用圖能力的培養(yǎng),培養(yǎng)用數(shù)形結(jié)合的思想方法解決問題的意識.

    求作圖象的函數(shù)表達式

    與f(x)的關系

    由f(x)的圖象需經(jīng)過的變換

    y=f(x)±b(b>0)

    沿y軸向平移b個單位

    y=f(x±a)(a>0)

    沿x軸向平移a個單位

    y=-f(x)

    作關于x軸的對稱圖形

    y=f(|x|)

    右不動、左右關于y軸對稱

    y=|f(x)|

    上不動、下沿x軸翻折

    y=f-1(x)

    作關于直線y=x的對稱圖形

    y=f(ax)(a>0)

    橫坐標縮短到原來的,縱坐標不變

    y=af(x)

    縱坐標伸長到原來的|a|倍,橫坐標不變

    y=f(-x)

    作關于y軸對稱的圖形

    【例】定義在實數(shù)集上的函數(shù)f(x),對任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.

    ①求證:f(0)=1;

    ②求證:y=f(x)是偶函數(shù);

    ③若存在常數(shù)c,使求證對任意x∈R,有f(x+c)=-f(x)成立;試問函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個周期;如果不是,請說明理由.

    思路分析:我們把沒有給出解析式的函數(shù)稱之為抽象函數(shù),解決這類問題一般采用賦值法.

    解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1.

    ②令x=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說明f(x)為偶函數(shù).

    ③分別用(c>0)替換x、y,有f(x+c)+f(x)=

    所以,所以f(x+c)=-f(x).

    兩邊應用中的結(jié)論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),

    所以f(x)是周期函數(shù),2c就是它的一個周期.

    高一數(shù)學必修1函數(shù)的知識點:一次函數(shù)

    一、定義與定義式:

    自變量x和因變量y有如下關系:

    y=kx+b

    則此時稱y是x的一次函數(shù)。

    特別地,當b=0時,y是x的正比例函數(shù)。

    即:y=kx(k為常數(shù),k≠0)

    二、一次函數(shù)的性質(zhì):

    1.y的變化值與對應的x的變化值成正比例,比值為k即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))

    2.當x=0時,b為函數(shù)在y軸上的截距。

    三、一次函數(shù)的圖像及性質(zhì):

    1.作法與圖形:通過如下3個步驟

    (1)列表;

    (2)描點;

    (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

    2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

    3.k,b與函數(shù)圖像所在象限:

    當k>0時,直線必通過一、三象限,y隨x的增大而增大;

    當k<0時,直線必通過二、四象限,y隨x的增大而減小。

    當b>0時,直線必通過一、二象限;

    當b=0時,直線通過原點

    當b<0時,直線必通過三、四象限。

    特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

    這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

    高中數(shù)學知識點總結(jié)

    1、點,線,面

    點,線,面:①圖形是由點,線,面構(gòu)成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。

    展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。

    截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

    視圖:主視圖,左視圖,俯視圖。

    多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

    弧、扇形:①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。

    2、角

    線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經(jīng)過兩點有且只有一條直線。

    比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。

    角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。

    角的比較:①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。②一條射線繞著他的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

    平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

    垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內(nèi),過一點有且只有一條直線與已知直線垂直。

    垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

    垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。

    垂直平分線定理:

    性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;

    判定定理:到線段2端點距離相等的點在這線段的垂直平分線上

    角平分線:把一個角平分的射線叫該角的角平分線。

    定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

    性質(zhì)定理:角平分線上的點到該角兩邊的距離相等

    判定定理:到角的兩邊距離相等的點在該角的角平分線上

    正方形:一組鄰邊相等的矩形是正方形

    性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

    判定:1、對角線相等的菱形2、鄰邊相等的矩形

    高一數(shù)學知識點總結(jié)最新相關文章:

    高一數(shù)學知識點總結(jié)(人教版)

    高一數(shù)學知識點歸納總結(jié)

    高一數(shù)學??贾R點總結(jié)

    高一數(shù)學知識點全面總結(jié)

    高一數(shù)學知識點總結(jié)歸納

    高中數(shù)學知識點全總結(jié)最全版

    高一數(shù)學知識點匯總大全

    高中高一數(shù)學知識點總結(jié)

    高一數(shù)學知識點(考前必看)

    人教版高中數(shù)學知識點總結(jié)最新

    1340100 亚洲色欲在线播放一区,日韩黄色在线观看无遮挡,九一无码中文字幕久久无码,亚洲中文字幕在线第二页 亚洲国产综合精品中文第一区 2022国产日韩中文无码
    <rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>