<rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>
  • 學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

    高一數(shù)學(xué)人教版上學(xué)期知識(shí)點(diǎn)

    時(shí)間: 錦祥0 分享

    偶爾會(huì)抱怨為什么自己沒(méi)天賦,又或者因?yàn)閯e人能輕易做到自己做不到的事而不平衡。從某種角度上來(lái)講,這完全沒(méi)辦法?,F(xiàn)在的我倒覺(jué)得這樣也好,世上或許有人能一步登天,但那人不是我。自己一點(diǎn)一點(diǎn)抓住的東西,比什么都來(lái)得真實(shí)。用時(shí)間換天份,用堅(jiān)持換機(jī)遇,我走得很慢,但我絕不回頭。小編高一頻道為大家整理了《高一數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)復(fù)習(xí)》供大家參考!

    高一數(shù)學(xué)人教版上學(xué)期知識(shí)點(diǎn)

    1.函數(shù)的奇偶性

    (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

    (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

    (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

    (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

    (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

    2.復(fù)合函數(shù)的有關(guān)問(wèn)題

    (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。

    (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

    3.函數(shù)圖像(或方程曲線的對(duì)稱性)

    (1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

    (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

    (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

    (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

    (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

    (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱;

    4.函數(shù)的周期性

    (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

    (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

    (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

    (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);

    (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

    (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

    5.方程k=f(x)有解k∈D(D為f(x)的值域);

    a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

    (1)(a>0,a≠1,b>0,n∈R+);

    (2)logaN=(a>0,a≠1,b>0,b≠1);

    (3)logab的符號(hào)由口訣“同正異負(fù)”記憶;

    (4)alogaN=N(a>0,a≠1,N>0);

    6.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

    (1)A中元素必須都有象且;

    (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

    7.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

    8.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:

    (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

    (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

    (3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

    (4)周期函數(shù)不存在反函數(shù);

    (5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

    (6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

    9.處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合

    二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;

    10依據(jù)單調(diào)性

    利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問(wèn)題;

    11恒成立問(wèn)題的處理方法

    (1)分離參數(shù)法;

    (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

    練習(xí)題:

    1.(-3,4)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為_(kāi)________,關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為_(kāi)_________,

    關(guān)于原點(diǎn)對(duì)稱的坐標(biāo)為_(kāi)_________.

    2.點(diǎn)B(-5,-2)到x軸的距離是____,到y(tǒng)軸的距離是____,到原點(diǎn)的距離是____

    3.以點(diǎn)(3,0)為圓心,半徑為5的圓與x軸交點(diǎn)坐標(biāo)為_(kāi)________________,

    與y軸交點(diǎn)坐標(biāo)為_(kāi)_______________

    4.點(diǎn)P(a-3,5-a)在第一象限內(nèi),則a的取值范圍是____________

    5.小華用500元去購(gòu)買單價(jià)為3元的一種商品,剩余的錢y(元)與購(gòu)買這種商品的件數(shù)x(件)

    之間的函數(shù)關(guān)系是______________,x的取值范圍是__________

    6.函數(shù)y=的自變量x的取值范圍是________

    7.當(dāng)a=____時(shí),函數(shù)y=x是正比例函數(shù)

    8.函數(shù)y=-2x+4的圖象經(jīng)過(guò)___________象限,它與兩坐標(biāo)軸圍成的三角形面積為_(kāi)________,

    周長(zhǎng)為_(kāi)______

    9.一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)(1,5),交y軸于3,則k=____,b=____

    10.若點(diǎn)(m,m+3)在函數(shù)y=-x+2的圖象上,則m=____

    11.y與3x成正比例,當(dāng)x=8時(shí),y=-12,則y與x的函數(shù)解析式為_(kāi)__________

    12.函數(shù)y=-x的圖象是一條過(guò)原點(diǎn)及(2,___)的直線,這條直線經(jīng)過(guò)第_____象限,

    當(dāng)x增大時(shí),y隨之________

    13.函數(shù)y=2x-4,當(dāng)x_______,y0,b0,b>0;C、k

    高一數(shù)學(xué)人教版上學(xué)期知識(shí)點(diǎn)

    1.數(shù)列的定義

    按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng).

    (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

    (2)在數(shù)列的定義中并沒(méi)有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….

    (4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號(hào),它是自變量的值,相當(dāng)于f(n)中的n.

    (5)次序?qū)τ跀?shù)列來(lái)講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.

    2.數(shù)列的分類

    (1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對(duì)數(shù)列進(jìn)行分類,分為有窮數(shù)列和無(wú)窮數(shù)列.在寫(xiě)數(shù)列時(shí),對(duì)于有窮數(shù)列,要把末項(xiàng)寫(xiě)出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫(xiě)成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無(wú)窮數(shù)列.

    (2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列、常數(shù)列.

    3.數(shù)列的通項(xiàng)公式

    數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個(gè)規(guī)律通常是用式子f(n)來(lái)表示的,

    這兩個(gè)通項(xiàng)公式形式上雖然不同,但表示同一個(gè)數(shù)列,正像每個(gè)函數(shù)關(guān)系不都能用解析式表達(dá)出來(lái)一樣,也不是每個(gè)數(shù)列都能寫(xiě)出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是的,僅僅知道一個(gè)數(shù)列前面的有限項(xiàng),無(wú)其他說(shuō)明,數(shù)列是不能確定的,通項(xiàng)公式更非.如:數(shù)列1,2,3,4,…,

    由公式寫(xiě)出的后續(xù)項(xiàng)就不一樣了,因此,通項(xiàng)公式的歸納不僅要看它的前幾項(xiàng),更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項(xiàng)寫(xiě)出其通項(xiàng)公式,沒(méi)有通用的方法可循.

    再?gòu)?qiáng)調(diào)對(duì)于數(shù)列通項(xiàng)公式的理解注意以下幾點(diǎn):

    (1)數(shù)列的通項(xiàng)公式實(shí)際上是一個(gè)以正整數(shù)集N或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達(dá)式.

    (2)如果知道了數(shù)列的通項(xiàng)公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個(gè)數(shù)列的各項(xiàng);同時(shí),用數(shù)列的通項(xiàng)公式也可判斷某數(shù)是否是某數(shù)列中的一項(xiàng),如果是的話,是第幾項(xiàng).

    (3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項(xiàng)公式.

    如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構(gòu)成的數(shù)列1,1.4,1.41,1.414,1.4142,…就沒(méi)有通項(xiàng)公式.

    (4)有的數(shù)列的通項(xiàng)公式,形式上不一定是的,正如舉例中的:

    (5)有些數(shù)列,只給出它的前幾項(xiàng),并沒(méi)有給出它的構(gòu)成規(guī)律,那么僅由前面幾項(xiàng)歸納出的數(shù)列通項(xiàng)公式并不.

    4.數(shù)列的圖象

    對(duì)于數(shù)列4,5,6,7,8,9,10每一項(xiàng)的序號(hào)與這一項(xiàng)有下面的對(duì)應(yīng)關(guān)系:

    序號(hào):1234567

    項(xiàng):45678910

    這就是說(shuō),上面可以看成是一個(gè)序號(hào)集合到另一個(gè)數(shù)的集合的映射.因此,從映射、函數(shù)的觀點(diǎn)看,數(shù)列可以看作是一個(gè)定義域?yàn)檎疦(或它的有限子集{1,2,3,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時(shí),對(duì)應(yīng)的一列函數(shù)值.這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù).

    由于數(shù)列的項(xiàng)是函數(shù)值,序號(hào)是自變量,數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)和解析式.

    數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的.

    數(shù)列用圖象來(lái)表示,可以以序號(hào)為橫坐標(biāo),相應(yīng)的項(xiàng)為縱坐標(biāo),描點(diǎn)畫(huà)圖來(lái)表示一個(gè)數(shù)列,在畫(huà)圖時(shí),為方便起見(jiàn),在平面直角坐標(biāo)系兩條坐標(biāo)軸上取的單位長(zhǎng)度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確.

    把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無(wú)限個(gè)或有限個(gè)孤立的點(diǎn).

    5.遞推數(shù)列

    一堆鋼管,共堆放了七層,自上而下各層的鋼管數(shù)構(gòu)成一個(gè)數(shù)列:4,5,6,7,8,9,10.①

    數(shù)列①還可以用如下方法給出:自上而下第一層的鋼管數(shù)是4,以下每一層的鋼管數(shù)都比上層的鋼管數(shù)多1

    練習(xí)題:

    1.若等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S33-S22=1,則數(shù)列{an}的公差是()

    A.12B.1C.2D.3

    解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代入S33-S22=1,得d=2,故選C.

    答案:C

    2.已知數(shù)列a1=1,a2=5,an+2=an+1-an(n∈N),則a2011等于()

    A.1B.-4C.4D.5

    解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,…

    故{an}是以6為周期的數(shù)列,

    ∴a2011=a6×335+1=a1=1.

    答案:A

    3.設(shè){an}是等差數(shù)列,Sn是其前n項(xiàng)和,且S5S8,則下列結(jié)論錯(cuò)誤的是()

    A.d<0B.a7=0

    C.S9>S5D.S6與S7均為Sn的值

    解析:∵S50.S6=S7,∴a7=0.

    又S7>S8,∴a8<0.

    假設(shè)S9>S5,則a6+a7+a8+a9>0,即2(a7+a8)>0.

    ∵a7=0,a8<0,∴a7+a8<0.假設(shè)不成立,故S9<s5.∴c錯(cuò)誤.< p="">

    答案:C

    高一數(shù)學(xué)人教版上學(xué)期知識(shí)點(diǎn)

    一:集合的含義與表示

    1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識(shí)到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)整體。

    把研究對(duì)象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡(jiǎn)稱為集。

    2、集合的中元素的三個(gè)特性:

    (1)元素的確定性:集合確定,則一元素是否屬于這個(gè)集合是確定的:屬于或不屬于。

    (2)元素的互異性:一個(gè)給定集合中的元素是的,不可重復(fù)的。

    (3)元素的無(wú)序性:集合中元素的位置是可以改變的,并且改變位置不影響集合

    3、集合的表示:{…}

    (1)用大寫(xiě)字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

    (2)集合的表示方法:列舉法與描述法。

    a、列舉法:將集合中的元素一一列舉出來(lái){a,b,c……}

    b、描述法:

    ①區(qū)間法:將集合中元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合。

    {x?R|x-3>2},{x|x-3>2}

    ②語(yǔ)言描述法:例:{不是直角三角形的三角形}

    ③Venn圖:畫(huà)出一條封閉的曲線,曲線里面表示集合。

    4、集合的分類:

    (1)有限集:含有有限個(gè)元素的集合

    (2)無(wú)限集:含有無(wú)限個(gè)元素的集合

    (3)空集:不含任何元素的集合

    5、元素與集合的關(guān)系:

    (1)元素在集合里,則元素屬于集合,即:a?A

    (2)元素不在集合里,則元素不屬于集合,即:a¢A

    注意:常用數(shù)集及其記法:

    非負(fù)整數(shù)集(即自然數(shù)集)記作:N

    正整數(shù)集N或N+

    整數(shù)集Z

    有理數(shù)集Q

    實(shí)數(shù)集R

    高一數(shù)學(xué)人教版上學(xué)期知識(shí)點(diǎn)相關(guān)文章

    高一數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(人教版)

    高一數(shù)學(xué)上學(xué)期重點(diǎn)必用的知識(shí)點(diǎn)

    高一數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié)(人教版)

    高一上下學(xué)期必須學(xué)會(huì)的知識(shí)點(diǎn)復(fù)習(xí)大綱

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)上冊(cè)

    高一上學(xué)期數(shù)學(xué)必修內(nèi)容總結(jié)

    高一人教版數(shù)學(xué)必修一第一章知識(shí)點(diǎn)整理

    人教版高中數(shù)學(xué)知識(shí)點(diǎn)提綱

    高一數(shù)學(xué)正弦定理知識(shí)點(diǎn)總結(jié)

    高一數(shù)學(xué)人教版上學(xué)期知識(shí)點(diǎn)

    偶爾會(huì)抱怨為什么自己沒(méi)天賦,又或者因?yàn)閯e人能輕易做到自己做不到的事而不平衡。從某種角度上來(lái)講,這完全沒(méi)辦法?,F(xiàn)在的我倒覺(jué)得這樣也好,世上或許有人能一步登天,但那人不是我。自己一點(diǎn)一點(diǎn)抓住的東西,比什么
    推薦度:
    點(diǎn)擊下載文檔文檔為doc格式
    1076110 亚洲色欲在线播放一区,日韩黄色在线观看无遮挡,九一无码中文字幕久久无码,亚洲中文字幕在线第二页 亚洲国产综合精品中文第一区 2022国产日韩中文无码
    <rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>