高中高一數(shù)學(xué)知識點總結(jié)
學(xué)習(xí)數(shù)學(xué)記得東西很多,如果單純的記憶每個公式,不但增加記憶量而且容易忘。下面是小編為大家整理的高中高一數(shù)學(xué)知識點,歡迎閱讀,希望能幫助到大家!
高中高一數(shù)學(xué)知識點總結(jié)1
集合常用大寫拉丁字母來表示,如:A,B,C…而對于集合中的元素則用小寫的拉丁字母來表示,如:a,b,c…拉丁字母只是相當(dāng)于集合的名字,沒有任何實際的意義。
將拉丁字母賦給集合的方法是用一個等式來表示的,例如:A={…}的形式。等號左邊是大寫的拉丁字母,右邊花括號括起來的,括號內(nèi)部是具有某種共同性質(zhì)的數(shù)學(xué)元素。
常用的有列舉法和描述法。
1.列舉法﹕常用于表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括號內(nèi)﹐這種表示集合的方法叫做列舉法。{1,2,3,……}
2.描述法﹕常用于表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括號內(nèi)﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小于π的正實數(shù)組成的集合表示為:{x|0
3.圖示法(venn圖)﹕為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內(nèi)部表示一個集合。集合
自然語言常用數(shù)集的符號:
(1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記作N;不包括0的自然數(shù)集合,記作N_
(2)非負整數(shù)集內(nèi)排除0的集,也稱正整數(shù)集,記作Z+;負整數(shù)集內(nèi)也排除0的集,稱負整數(shù)集,記作Z-
(3)全體整數(shù)的集合通常稱作整數(shù)集,記作Z
(4)全體有理數(shù)的集合通常簡稱有理數(shù)集,記作Q。Q={p/q|p∈Z,q∈N,且p,q互質(zhì)}(正負有理數(shù)集合分別記作Q+Q-)
(5)全體實數(shù)的集合通常簡稱實數(shù)集,記作R(正實數(shù)集合記作R+;負實數(shù)記作R-)
(6)復(fù)數(shù)集合計作C集合的運算:集合交換律A∩B=B∩AA∪B=B∪A集合結(jié)合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合
Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研究集合時,會遇到有關(guān)集合中的元素個數(shù)問題,我們把有限集合A的元素個數(shù)記為card(A)。
集合吸收律A∪(A∩B)=AA∩(A∪B)=A集合求補律A∪CuA=UA∩CuA=Φ設(shè)A為集合,把A的全部子集構(gòu)成的集合叫做A的冪集德摩根律A-(BUC)=(A-B)∩(A-C)A-(B∩C)=(A-B)U(A-C)~(BUC)=~B∩~C~(B∩C)=~BU~C~Φ=E~E=Φ特殊集合的表示復(fù)數(shù)集C實數(shù)集R正實數(shù)集R+負實數(shù)集R-整數(shù)集Z正整數(shù)集Z+負整數(shù)集Z-有理數(shù)集Q正有理數(shù)集Q+負有理數(shù)集Q-不含0的有理數(shù)集Q_
高中高一數(shù)學(xué)知識點總結(jié)2
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
①直線在平面內(nèi)——有無數(shù)個公共點
②直線和平面相交——有且只有一個公共點
直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。
esp.空間向量法(找平面的法向量)
規(guī)定:
a、直線與平面垂直時,所成的角為直角,
b、直線與平面平行或在平面內(nèi),所成的角為0°角
由此得直線和平面所成角的取值范圍為[0°,90°]
最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角
三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直
esp.直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。
直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
③直線和平面平行——沒有公共點
直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。
高中高一數(shù)學(xué)知識點總結(jié)3
如果直線a與平面α平行,那么直線a與平面α內(nèi)的直線有哪些位置關(guān)系?
平行或異面。
若直線a與平面α平行,那么在平面α內(nèi)與直線a平行的直線有多少條?這些直線的位置關(guān)系如何?
無數(shù)條;平行。
如果直線a與平面α平行,經(jīng)過直線a的平面β與平面α相交于直線b,那么直線a、b的位置關(guān)系如何?為什么?
平行;因為a∥α,所以a與α沒有公共點,則a與b沒有公共點,又a與b在同一平面β內(nèi),所以a與b平行。
綜上分析,在直線a與平面α平行的條件下我們可以得到什么結(jié)論?
如果一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。
高中高一數(shù)學(xué)知識點總結(jié)相關(guān)文章:
★ 高一數(shù)學(xué)知識點總結(jié)(考前必看)
★ 高中數(shù)學(xué)知識點全總結(jié)最全版
★ 高一數(shù)學(xué)知識點總結(jié)期末必備