<rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>
  • 學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

    2022年高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

    時(shí)間: 淑燕0 分享

    2021年高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)有哪些?高三數(shù)學(xué)一直是學(xué)習(xí)的難點(diǎn)。對(duì)于高考生來說,總結(jié)高三的知識(shí)點(diǎn)非常重要。一起來看看2021年高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎查閱!

    高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

    1. 對(duì)于集合,一定要抓住集合的代表元素,及元素的確定性、互異性、無序性。

    中元素各表示什么?

    注重借助于數(shù)軸和文氏圖解集合問題。

    空集是一切集合的子集,是一切非空集合的真子集。

    3. 注意下列性質(zhì):

    (3)德摩根定律:

    4. 你會(huì)用補(bǔ)集思想解決問題嗎?(排除法、間接法)

    的取值范圍。

    6. 命題的四種形式及其相互關(guān)系是什么?

    (互為逆否關(guān)系的命題是等價(jià)命題。)

    原命題與逆否命題同真、同假;逆命題與否命題同真同假。

    7. 對(duì)映射的概念了解嗎?映射f:AB,是否注意到A中元素的任意性和B中與之對(duì)應(yīng)元素的唯一性,哪幾種對(duì)應(yīng)能構(gòu)成映射?

    (一對(duì)一,多對(duì)一,允許B中有元素?zé)o原象。)

    8. 函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

    (定義域、對(duì)應(yīng)法則、值域)

    9. 求函數(shù)的定義域有哪些常見類型?

    10. 如何求復(fù)合函數(shù)的定義域?

    義域是_____________。

    11. 求一個(gè)函數(shù)的解析式或一個(gè)函數(shù)的反函數(shù)時(shí),注明函數(shù)的定義域了嗎?

    12. 反函數(shù)存在的條件是什么?

    (一一對(duì)應(yīng)函數(shù))

    求反函數(shù)的步驟掌握了嗎?

    (①反解x;②互換x、y;③注明定義域)

    13. 反函數(shù)的性質(zhì)有哪些?

    ①互為反函數(shù)的圖象關(guān)于直線y=x對(duì)稱;

    ②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;

    14. 如何用定義證明函數(shù)的單調(diào)性?

    (取值、作差、判正負(fù))

    如何判斷復(fù)合函數(shù)的單調(diào)性?)

    15. 如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?

    值是( )

    A. 0B. 1C. 2D. 3

    a的最大值為3)

    16. 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

    (f(x)定義域關(guān)于原點(diǎn)對(duì)稱)

    注意如下結(jié)論:

    (1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。

    17. 你熟悉周期函數(shù)的定義嗎?

    函數(shù),T是一個(gè)周期。)

    如:

    18. 你掌握常用的圖象變換了嗎?

    注意如下翻折變換:

    19. 你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?

    的雙曲線。

    應(yīng)用:①三個(gè)二次(二次函數(shù)、二次方程、二次不等式)的關(guān)系二次方程

    ②求閉區(qū)間[m,n]上的最值。

    ③求區(qū)間定(動(dòng)),對(duì)稱軸動(dòng)(定)的最值問題。

    ④一元二次方程根的分布問題。

    由圖象記性質(zhì)! (注意底數(shù)的限定!)

    利用它的單調(diào)性求最值與利用均值不等式求最值的區(qū)別是什么?

    20. 你在基本運(yùn)算上常出現(xiàn)錯(cuò)誤嗎?

    21. 如何解抽象函數(shù)問題?

    (賦值法、結(jié)構(gòu)變換法)

    22. 掌握求函數(shù)值域的常用方法了嗎?

    (二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導(dǎo)數(shù)法等。)

    如求下列函數(shù)的最值:

    23. 你記得弧度的定義嗎?能寫出圓心角為,半徑為R的弧長公式和扇形面積公式嗎?

    24. 熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義

    25. 你能迅速畫出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫出單調(diào)區(qū)間、對(duì)稱點(diǎn)、對(duì)稱軸嗎?

    (x,y)作圖象。

    27. 在三角函數(shù)中求一個(gè)角時(shí)要注意兩個(gè)方面先求出某一個(gè)三角函數(shù)值,再判定角的范圍。

    28. 在解含有正、余弦函數(shù)的問題時(shí),你注意(到)運(yùn)用函數(shù)的有界性了嗎?

    29. 熟練掌握三角函數(shù)圖象變換了嗎?

    (平移變換、伸縮變換)

    平移公式:

    圖象?

    30. 熟練掌握同角三角函數(shù)關(guān)系和誘導(dǎo)公式了嗎?

    奇、偶指k取奇、偶數(shù)。

    A. 正值或負(fù)值B. 負(fù)值C. 非負(fù)值D. 正值

    31. 熟練掌握兩角和、差、倍、降冪公式及其逆向應(yīng)用了嗎?

    理解公式之間的聯(lián)系:

    應(yīng)用以上公式對(duì)三角函數(shù)式化簡。(化簡要求:項(xiàng)數(shù)最少、函數(shù)種類最少,分母中不含三角函數(shù),能求值,盡可能求值。)

    具體方法:

    (2)名的變換:化弦或化切

    (3)次數(shù)的變換:升、降冪公式

    (4)形的變換:統(tǒng)一函數(shù)形式,注意運(yùn)用代數(shù)運(yùn)算。

    32. 正、余弦定理的各種表達(dá)形式你還記得嗎?如何實(shí)現(xiàn)邊、角轉(zhuǎn)化,而解斜三角形?

    (應(yīng)用:已知兩邊一夾角求第三邊;已知三邊求角。)

    33. 用反三角函數(shù)表示角時(shí)要注意角的范圍。

    34. 不等式的性質(zhì)有哪些?

    答案:C

    35. 利用均值不等式:

    值?(一正、二定、三相等)

    注意如下結(jié)論:

    36. 不等式證明的基本方法都掌握了嗎?

    (比較法、分析法、綜合法、數(shù)學(xué)歸納法等)

    并注意簡單放縮法的應(yīng)用。

    (移項(xiàng)通分,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結(jié)果。)

    38. 用穿軸法解高次不等式奇穿,偶切,從最大根的右上方開始

    39. 解含有參數(shù)的不等式要注意對(duì)字母參數(shù)的討論

    40. 對(duì)含有兩個(gè)絕對(duì)值的不等式如何去解?

    (找零點(diǎn),分段討論,去掉絕對(duì)值符號(hào),最后取各段的并集。)

    證明:

    (按不等號(hào)方向放縮)

    42. 不等式恒成立問題,常用的處理方式是什么?(可轉(zhuǎn)化為最值問題,或△問題)

    43. 等差數(shù)列的'定義與性質(zhì)

    0的二次函數(shù))

    項(xiàng),即:

    44. 等比數(shù)列的定義與性質(zhì)

    46. 你熟悉求數(shù)列通項(xiàng)公式的常用方法嗎?

    例如:(1)求差(商)法

    解:

    [練習(xí)]

    (2)疊乘法

    解:

    (3)等差型遞推公式

    [練習(xí)]

    (4)等比型遞推公式

    [練習(xí)]

    (5)倒數(shù)法

    47. 你熟悉求數(shù)列前n項(xiàng)和的常用方法嗎?

    例如:(1)裂項(xiàng)法:把數(shù)列各項(xiàng)拆成兩項(xiàng)或多項(xiàng)之和,使之出現(xiàn)成對(duì)互為相反數(shù)的項(xiàng)。

    解:

    [練習(xí)]

    (2)錯(cuò)位相減法:

    (3)倒序相加法:把數(shù)列的各項(xiàng)順序倒寫,再與原來順序的數(shù)列相加。

    [練習(xí)]

    48. 你知道儲(chǔ)蓄、貸款問題嗎?

    △零存整取儲(chǔ)蓄(單利)本利和計(jì)算模型:

    若每期存入本金p元,每期利率為r,n期后,本利和為:

    △若按復(fù)利,如貸款問題按揭貸款的每期還款計(jì)算模型(按揭貸款分期等額歸還本息的借款種類)

    若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復(fù)利),那么每期應(yīng)還x元,滿足

    p貸款數(shù),r利率,n還款期數(shù)

    49. 解排列、組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。

    (2)排列:從n個(gè)不同元素中,任取m(mn)個(gè)元素,按照一定的順序排成一

    (3)組合:從n個(gè)不同元素中任取m(mn)個(gè)元素并組成一組,叫做從n個(gè)不

    50. 解排列與組合問題的規(guī)律是:

    相鄰問題捆綁法;相間隔問題插空法;定位問題優(yōu)先法;多元問題分類法;至多至少問題間接法;相同元素分組可采用隔板法,數(shù)量不大時(shí)可以逐一排出結(jié)果。

    如:學(xué)號(hào)為1,2,3,4的四名學(xué)生的考試成績

    則這四位同學(xué)考試成績的所有可能情況是( )

    A. 24B. 15C. 12D. 10

    解析:可分成兩類:

    (2)中間兩個(gè)分?jǐn)?shù)相等

    相同兩數(shù)分別取90,91,92,對(duì)應(yīng)的排列可以數(shù)出來,分別有3,4,3種,有10種。

    共有5+10=15(種)情況

    51. 二項(xiàng)式定理

    性質(zhì):

    (3)最值:n為偶數(shù)時(shí),n+1為奇數(shù),中間一項(xiàng)的二項(xiàng)式系數(shù)最大且為第

    表示)

    52. 你對(duì)隨機(jī)事件之間的關(guān)系熟悉嗎?

    的和(并)。

    (5)互斥事件(互不相容事件):A與B不能同時(shí)發(fā)生叫做A、B互斥。

    (6)對(duì)立事件(互逆事件):

    (7)獨(dú)立事件:A發(fā)生與否對(duì)B發(fā)生的概率沒有影響,這樣的兩個(gè)事件叫做相互獨(dú)立事件。

    53. 對(duì)某一事件概率的求法:

    分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即

    (5)如果在一次試驗(yàn)中A發(fā)生的概率是p,那么在n次獨(dú)立重復(fù)試驗(yàn)中A恰好發(fā)生

    如:設(shè)10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。

    (1)從中任取2件都是次品;

    (2)從中任取5件恰有2件次品;

    (3)從中有放回地任取3件至少有2件次品;

    解析:有放回地抽取3次(每次抽1件),n=103

    而至少有2件次品為恰有2次品和三件都是次品

    (4)從中依次取5件恰有2件次品。

    解析:∵一件一件抽取(有順序)

    分清(1)、(2)是組合問題,(3)是可重復(fù)排列問題,(4)是無重復(fù)排列問題。

    54. 抽樣方法主要有:簡單隨機(jī)抽樣(抽簽法、隨機(jī)數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的特征是從總體中逐個(gè)抽取;系統(tǒng)抽樣,常用于總體個(gè)數(shù)較多時(shí),它的主要特征是均衡成若干部分,每部分只取一個(gè);分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個(gè)個(gè)體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。

    55. 對(duì)總體分布的估計(jì)用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計(jì)總體的期望和方差。

    要熟悉樣本頻率直方圖的作法:

    (2)決定組距和組數(shù);

    (3)決定分點(diǎn);

    (4)列頻率分布表;

    (5)畫頻率直方圖。

    如:從10名女生與5名男生中選6名學(xué)生參加比賽,如果按性別分層隨機(jī)抽樣,則組成此參賽隊(duì)的概率為____________。

    56. 你對(duì)向量的有關(guān)概念清楚嗎?

    (1)向量既有大小又有方向的量。

    在此規(guī)定下向量可以在平面(或空間)平行移動(dòng)而不改變。

    (6)并線向量(平行向量)方向相同或相反的向量。

    規(guī)定零向量與任意向量平行。

    (7)向量的加、減法如圖:

    (8)平面向量基本定理(向量的分解定理)

    的一組基底。

    (9)向量的坐標(biāo)表示

    表示。

    57. 平面向量的數(shù)量積

    數(shù)量積的幾何意義:

    (2)數(shù)量積的運(yùn)算法則

    58. 線段的定比分點(diǎn)

    ※. 你能分清三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎?

    59. 立體幾何中平行、垂直關(guān)系證明的思路清楚嗎?

    平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化:

    高中數(shù)學(xué)最易混淆知識(shí)點(diǎn)歸納

    1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解.

    2.在應(yīng)用條件時(shí),易A忽略是空集的情況

    3.你會(huì)用補(bǔ)集的思想解決有關(guān)問題嗎?

    4.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

    5.你知道“否命題”與“命題的否定形式”的區(qū)別.

    6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則.

    7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱.

    8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域.

    9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào).例如:.

    10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法

    11.求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.

    12.求函數(shù)的值域必須先求函數(shù)的定義域。

    13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?

    14.解對(duì)數(shù)函數(shù)問題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?

    (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

    15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

    16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。

    17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?

    18.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”.

    19.絕對(duì)值不等式的解法及其幾何意義是什么?

    20.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?

    21.解含參數(shù)不等式的通法是“定義域?yàn)榍疤?,函?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.

    22.在求不等式的解集、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.

    23.兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號(hào)可倒”即a>b>0,a<0.

    24.解決一些等比數(shù)列的前項(xiàng)和問題,你注意到要對(duì)公比及兩種情況進(jìn)行討論了嗎?

    25.在“已知,求”的問題中,你在利用公式時(shí)注意到了嗎?(時(shí),應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。

    26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無窮等比數(shù)列的所有項(xiàng)的和必定存在?

    27.數(shù)列單調(diào)性問題能否等同于對(duì)應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)

    28.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來證明時(shí)也成立。

    29.正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

    30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?

    31.在解三角問題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?

    32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)

    33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是

    34.你還記得某些特殊角的三角函數(shù)值嗎?

    35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會(huì)寫三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?

    36.函數(shù)的圖象的平移,方程的平移以及點(diǎn)的平移公式易混:

    (1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個(gè)單位且下移3個(gè)單位得到的圖象的解析式為y=2(x+2)+4-3,即y=2x+5.

    (2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個(gè)個(gè)單位且下移3個(gè)單位得到的圖象的解析式為2(x+2)-(y+3)+4=0,即y=2x+5.

    (3)點(diǎn)的平移公式:點(diǎn)P(x,y)按向量平移到點(diǎn)P'(x',y'),則x=x'+hy'=y+k.

    37.在三角函數(shù)中求一個(gè)角時(shí),注意考慮兩方面了嗎?(先求出某一個(gè)三角函數(shù)值,再判定角的范圍)

    38.形如的周期都是,但的周期為。

    39.正弦定理時(shí)易忘比值還等于2R.

    2021年高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)相關(guān)文章

    2021年高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

    高考數(shù)學(xué)知識(shí)點(diǎn)2021

    2021高三數(shù)學(xué)一輪復(fù)習(xí)攻略

    高三數(shù)學(xué)重點(diǎn)知識(shí)總結(jié)大全

    2020高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)與答題套路

    高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全

    2020高三數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納

    2020高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)大全

    2020年高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

    2020高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)

    878756
    亚洲色欲在线播放一区,日韩黄色在线观看无遮挡,九一无码中文字幕久久无码,亚洲中文字幕在线第二页 亚洲国产综合精品中文第一区 2022国产日韩中文无码
    <rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>