<rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>
  • 學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) > 高中數(shù)學(xué)知識點(diǎn)總結(jié)

    高中數(shù)學(xué)知識點(diǎn)總結(jié)

    時(shí)間: 惠敏4587 分享

    高中數(shù)學(xué)知識點(diǎn)總結(jié)_高中數(shù)學(xué)知識點(diǎn)最全版

    進(jìn)入高中之后,數(shù)學(xué)對于許多學(xué)生來說,是一個(gè)學(xué)習(xí)較難的科目,且一些學(xué)生在數(shù)學(xué)這門課上都是越學(xué)越不會,那么高中數(shù)學(xué)知識點(diǎn)有哪些?下面是小編給大家?guī)淼母咧袛?shù)學(xué)知識點(diǎn)總結(jié)_高中數(shù)學(xué)知識點(diǎn)最全版,以供大家參考!

    高中數(shù)學(xué)知識點(diǎn)總結(jié)


    ↓↓↓點(diǎn)擊獲取更多"高中數(shù)學(xué)知識點(diǎn)"↓↓↓

    高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

    高二數(shù)學(xué)必修5數(shù)列知識點(diǎn)

    高三數(shù)列和不等式數(shù)學(xué)題

    ★★ 高中數(shù)學(xué)公式大全 ★★


    高中數(shù)學(xué)知識點(diǎn)總結(jié)篇1

    1、命題的四種形式及其相互關(guān)系是什么?

    (互為逆否關(guān)系的命題是等價(jià)命題。)

    原命題與逆否命題同真、同假;逆命題與否命題同真同假。

    2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應(yīng)元素的唯一性,哪幾種對應(yīng)能構(gòu)成映射?

    (一對一,多對一,允許B中有元素?zé)o原象。)

    3、 函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

    (定義域、對應(yīng)法則、值域)

    4、反函數(shù)存在的條件是什么?

    (一一對應(yīng)函數(shù))

    求反函數(shù)的步驟掌握了嗎?

    (①反解x;②互換x、y;③注明定義域)

    5、反函數(shù)的性質(zhì)有哪些?

    ①互為反函數(shù)的圖象關(guān)于直線y=x對稱;

    ②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;

    6、 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

    (f(x)定義域關(guān)于原點(diǎn)對稱)

    高中數(shù)學(xué)知識點(diǎn)總結(jié)篇2

    1、三類角的求法:

    ①找出或作出有關(guān)的角。

    ②證明其符合定義,并指出所求作的角。

    ③計(jì)算大小(解直角三角形,或用余弦定理)。

    2、正棱柱——底面為正多邊形的直棱柱

    正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。

    正棱錐的計(jì)算集中在四個(gè)直角三角形中:

    3、怎樣判斷直線l與圓C的位置關(guān)系?

    圓心到直線的距離與圓的半徑比較。

    直線與圓相交時(shí),注意利用圓的“垂徑定理”。

    4、 對線性規(guī)劃問題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。

    不看后悔!清華名師揭秘學(xué)好高中數(shù)學(xué)的方法

    培養(yǎng)興趣是關(guān)鍵。學(xué)生對數(shù)學(xué)產(chǎn)生了興趣,自然有動(dòng)力去鉆研。如何培養(yǎng)興趣呢?

    (1) 欣賞數(shù)學(xué)的美感

    比如幾何圖形中的對稱、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密……

    舉個(gè)例子,

    通過對旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個(gè)定點(diǎn)的距離之差的絕對值為定值(小于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的集合。

    (2)注意到數(shù)學(xué)在實(shí)際生活中的應(yīng)用。

    例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識就可以理解.

    學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊.

    (3)采用靈活的教學(xué)手段,與時(shí)俱進(jìn)。

    利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識講得更具體形象,學(xué)生也更容易接受,理解更深。

    (4)適當(dāng)看一些科普類的書籍和文章。

    比如:學(xué)圓錐曲線的時(shí)候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學(xué)性質(zhì)的應(yīng)用,這方面的文章也不少。

    高中數(shù)學(xué)知識點(diǎn)總結(jié)篇3

    1、抽樣方法主要有:簡單隨機(jī)抽樣(抽簽法、隨機(jī)數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的特征是從總體中逐個(gè)抽取;系統(tǒng)抽樣,常用于總體個(gè)數(shù)較多時(shí),它的主要特征是均衡成若干部分,每部分只取一個(gè);分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個(gè)個(gè)體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。

    2、對總體分布的估計(jì)——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計(jì)總體的期望和方差。

    3、向量——既有大小又有方向的量。在此規(guī)定下向量可以在平面(或空間)平行移動(dòng)而不改變。

    4、并線向量(平行向量)——方向相同或相反的向量。規(guī)定零向量與任意向量平行。

    高中數(shù)學(xué)知識點(diǎn)總結(jié)篇4

    高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)及公式大全

    1:合(集):某些指定的對象集在一起就成為一個(gè)集合(集).其中每一個(gè)對象叫元素

    2.子集、交集、并集、補(bǔ)集、空集、全集等概念。

    1)子集:若對x∈A都有x∈B,則A B(或A B);

    2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )

    3)交集:A∩B={x| x∈A且x∈B}

    4)并集:A∪B={x| x∈A或x∈B}

    5)補(bǔ)集:CUA={x| x A但x∈U}

    3:不含任何元素的集合叫做空集,記為Φ

    4:函數(shù)的奇偶性

    (1)若f(x)是偶函數(shù),那么f(x)=f(-x) ;

    (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則 f(0)=0(可用于求參數(shù));

    (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或 (f(x)≠0);

    (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

    (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

    5:函數(shù)的周期性

    (1)y=f(x)對x∈R時(shí),f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

    (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

    (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

    (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數(shù);

    (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2 的周期函數(shù);

    (6)y=f(x)對x∈R時(shí),f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數(shù);

    6:反函數(shù):

    (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

    (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

    (3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

    (4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

    (5) y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

    7:一次函數(shù)的性質(zhì):

    1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k 即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

    2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

    8:二次函數(shù)的三種表達(dá)式

    一般式:y=ax’2+bx+c(a,b,c為常數(shù),a≠0)

    頂點(diǎn)式:y=a(x-h)’2+k[拋物線的頂點(diǎn)P(h,k)]

    交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

    9:拋物線與x軸交點(diǎn)個(gè)數(shù)

    Δ=b’2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

    Δ=b’2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

    Δ=b’2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b’2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

    10:幾何特征:

    棱柱:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

    棱錐:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.

    棱臺:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn) 圓柱:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形.

    圓錐:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形.

    圓臺:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形.

    球體:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑.

    高中數(shù)學(xué)知識點(diǎn)總結(jié)篇5

    必修一公式大全:

    sin2A=2sinA*cosA

    sin(A+B)=sinAcosB+cosAsinB

    sin(A-B)=sinAcosB-sinBcosA ?

    cos(A+B)=cosAcosB-sinAsinB

    cos(A-B)=cosAcosB+sinAsinB

    tan(A+B)=(tanA+tanB)/(1-tanAtanB)

    tan(A-B)=(tanA-tanB)/(1+tanAtanB)

    tan2A=2tanA/[1-(tanA)^2]

    cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

    tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA) (sinA)^2=(1-cos2A)/2

    (cosA)^2=(1+cos2A)/2 a3-b3=(a-b)(a2+ab+b2) a3+b3=(a+b)(a2-ab+b2)

    (a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2

    (a+b)3=(a+b)(a+b)(a+b)=(a2+2ab+b2)(a+b)=a3+3a2b+3ab2+b3

    (a-b)3=(a-b)(a-b)(a-b)=(a2-2ab+b2)(a-b)=a3-3a2b+3ab2-b3

    高中數(shù)學(xué)知識點(diǎn)總結(jié)篇6

    直線與方程

    (1)直線的傾斜角

    定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

    (2)直線的斜率

    ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

    當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),不存在.

    ②過兩點(diǎn)的直線的斜率公式:

    注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;

    (2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

    (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到.

    (3)直線方程

    ①點(diǎn)斜式:直線斜率k,且過點(diǎn)

    注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1.

    當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1.

    ②斜截式:,直線斜率為k,直線在y軸上的截距為b

    ③兩點(diǎn)式:()直線兩點(diǎn),

    ④截矩式:

    其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為.

    ⑤一般式:(A,B不全為0)

    注意:各式的適用范圍特殊的方程如:

    (4)平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

    (5)直線系方程:即具有某一共同性質(zhì)的直線

    (一)平行直線系

    平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

    (二)垂直直線系

    垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

    (三)過定點(diǎn)的直線系

    (ⅰ)斜率為k的直線系:,直線過定點(diǎn);

    (ⅱ)過兩條直線,的交點(diǎn)的直線系方程為

    (為參數(shù)),其中直線不在直線系中.

    (6)兩直線平行與垂直

    注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否.

    (7)兩條直線的交點(diǎn)

    相交

    交點(diǎn)坐標(biāo)即方程組的一組解.

    方程組無解;方程組有無數(shù)解與重合

    (8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn)

    (9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離

    (10)兩平行直線距離公式

    在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解.

    高中數(shù)學(xué)知識點(diǎn)總結(jié)篇7

    1、柱、錐、臺、球的結(jié)構(gòu)特征

    (1)棱柱:

    幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

    (2)棱錐

    幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.

    (3)棱臺:

    幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

    (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

    幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形.

    (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

    幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形.

    (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

    幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形.

    (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

    幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑.

    2、空間幾何體的三視圖

    定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

    俯視圖(從上向下)

    注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度.

    3、空間幾何體的直觀圖——斜二測畫法

    斜二測畫法特點(diǎn):①原來與x軸平行的線段仍然與x平行且長度不變;

    ②原來與y軸平行的線段仍然與y平行,長度為原來的一半.

    4、柱體、錐體、臺體的表面積與體積

    (1)幾何體的表面積為幾何體各個(gè)面的面積的和.

    (2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

    (3)柱體、錐體、臺體的體積公式

    高中數(shù)學(xué)知識點(diǎn)總結(jié)篇8

    1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑.

    2、圓的方程

    (1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

    (2)一般方程

    當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

    當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形.

    (3)求圓方程的方法:

    一般都采用待定系數(shù)法:先設(shè)后求.確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

    需求出a,b,r;若利用一般方程,需要求出D,E,F;

    另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置.

    高中數(shù)學(xué)必修二知識點(diǎn)總結(jié):直線與圓的位置關(guān)系:

    直線與圓的位置關(guān)系有相離,相切,相交三種情況:

    (1)設(shè)直線,圓,圓心到l的距離為,則有;;

    (2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

    (3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

    4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

    設(shè)圓,

    兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

    當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

    當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

    當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

    當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;

    當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓.

    注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

    4、空間點(diǎn)、直線、平面的位置關(guān)系

    公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi).

    應(yīng)用:判斷直線是否在平面內(nèi)

    用符號語言表示公理1:

    公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線

    符號:平面α和β相交,交線是a,記作α∩β=a.

    符號語言:

    公理2的作用:

    ①它是判定兩個(gè)平面相交的方法.

    ②它說明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過公共點(diǎn).

    ③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù).

    公理3:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面.

    推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.

    公理3及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)

    公理4:平行于同一條直線的兩條直線互相平行

    高中數(shù)學(xué)知識點(diǎn)總結(jié)篇9

    (1)數(shù)列的概念和簡單表示法

    ①了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項(xiàng)公式).

    ②了解數(shù)列是自變量為正整數(shù)的一類函數(shù).

    (2)等差數(shù)列、等比數(shù)列

    ①理解等差數(shù)列、等比數(shù)列的概念.

    ②掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.

    ③能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題.

    ④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.

    高中數(shù)學(xué)知識點(diǎn)總結(jié)篇10

    (1)不等關(guān)系了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.

    (2)一元二次不等式

    ①會從實(shí)際情境中抽象出一元二次不等式模型.

    ②通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

    ③會解一元二次不等式,對給定的一元二次不等式,會設(shè)計(jì)求解的程序框圖.

    (3)二元一次不等式組與簡單線性規(guī)劃問題

    ①會從實(shí)際情境中抽象出二元一次不等式組.

    ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.

    ③會從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

    (4)基本不等式:

    ①了解基本不等式的證明過程.

    ②會用基本不等式解決簡單的最大(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)

    高中數(shù)學(xué)知識點(diǎn)總結(jié)相關(guān)文章:

    高中數(shù)學(xué)知識點(diǎn)總結(jié)

    人教版高中數(shù)學(xué)知識點(diǎn)總結(jié)最新

    高中數(shù)學(xué)必考知識點(diǎn)歸納大全

    高中數(shù)學(xué)知識點(diǎn)總結(jié)及公式大全

    高中數(shù)學(xué)知識點(diǎn)大全整理

    高中數(shù)學(xué)必考知識點(diǎn)歸納整理

    高中數(shù)學(xué)重要知識點(diǎn)歸納

    高中數(shù)學(xué)必考知識點(diǎn)歸納

    高中數(shù)學(xué)必修知識點(diǎn)總結(jié)

    5818 亚洲色欲在线播放一区,日韩黄色在线观看无遮挡,九一无码中文字幕久久无码,亚洲中文字幕在线第二页 亚洲国产综合精品中文第一区 2022国产日韩中文无码
    <rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>