2022高三數(shù)學(xué)必備知識點(diǎn)
還不清楚高三年級數(shù)學(xué)有哪些知識點(diǎn)的小伙伴們,趕緊和小編去瞧一瞧看一看吧!下面小編為大家?guī)?022高三數(shù)學(xué)必備知識點(diǎn),歡迎大家參考閱讀,希望能夠幫助到大家!
高三數(shù)學(xué)必備知識點(diǎn)
1、集合的概念
集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。
集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。
2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。
3、集合中元素的特性
(1)確定性:設(shè)A是一個給定的集合,x是某一具體對象,則x或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。
(2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。
(3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個集合。
4、集合的分類
集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:
有限集:含有有限個元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。
無限集:含有無限個元素的集合,如“到平面上兩個定點(diǎn)的距離相等于所有點(diǎn)”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。
特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{x?R|+1=0}。
5、特定的集合的表示
為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。
(1)全體非負(fù)整數(shù)的集合通常簡稱非負(fù)整數(shù)集(或自然數(shù)集),記做N。
(2)非負(fù)整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。
(3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。
(4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。
(5)全體實(shí)數(shù)的集合通常簡稱為實(shí)數(shù)集,記做R。
高三數(shù)學(xué)基礎(chǔ)知識點(diǎn)
(1)棱柱:
定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個面是多邊形,其余各面都是有一個公共頂點(diǎn)的三角形,由這些面所圍成的幾何體
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的`截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺:
定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點(diǎn)字母,如五棱臺
幾何特征:
①上下底面是相似的平行多邊形
②側(cè)面是梯形
③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體
幾何特征:
①底面是全等的圓;
②母線與軸平行;
③軸與底面圓的半徑垂直;
④側(cè)面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體
幾何特征:
①底面是一個圓;
②母線交于圓錐的頂點(diǎn);
③側(cè)面展開圖是一個扇形。
(6)圓臺:
定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:
①上下底面是兩個圓;
②側(cè)面母線交于原圓錐的頂點(diǎn);
③側(cè)面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:
①球的截面是圓;
②球面上任意一點(diǎn)到球心的距離等于半徑。
高中數(shù)學(xué)技巧方法
做數(shù)學(xué)題的目的是檢查自己學(xué)的知識、方法是否已經(jīng)掌握很好了。如果掌握得不準(zhǔn)或有偏差,那么多做題反而鞏固了自己的缺欠,所以要在準(zhǔn)確把握住基本知識和方法的基礎(chǔ)上再做一定量的數(shù)學(xué)練習(xí)是很有必要的。
對于中檔題,尤其要講究做題效益,做完題之后,需要進(jìn)行一定的“反思”,思考一下本題所用的基礎(chǔ)知識或數(shù)學(xué)思考方法是什么等。自己可以自問自己,該題是否還有其他的想法或解法也可以做出來。
做完題之后,要分析方法與解法,善于總結(jié),該解題方法在其他問題時,是否也用到過,然后把它聯(lián)系起來,這樣可以得到更多的經(jīng)驗(yàn)和教訓(xùn),更重要的是要養(yǎng)成善于思考的好習(xí)慣,這樣將更利于以后的學(xué)習(xí)打下扎實(shí)的基礎(chǔ)。
當(dāng)然,學(xué)好數(shù)學(xué),如果沒有一定量的練習(xí)就不能形成技能。有的同學(xué)做完作業(yè),就一推了事,其實(shí)這是很不好的習(xí)慣,應(yīng)當(dāng)學(xué)會通過自己獨(dú)立檢查來驗(yàn)證作業(yè)的結(jié)果是否正確,這樣不但可以培養(yǎng)自己獨(dú)立思考能力,而且對參加各種數(shù)學(xué)考試也十分有利。