<rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>
  • 學習啦>學習方法>高中學習方法>高二學習方法>高二數(shù)學>

    高二數(shù)學重要知識點歸納

    時間: 維維0 分享

    數(shù)學是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學科,從某種角度看屬于形式科學的一種。下面給大家分享一些高二數(shù)學重要知識點,希望對大家有所幫助。

    高二數(shù)學重要知識點1

    1.拋物線是軸對稱圖形。對稱軸為直線

    x=-b/2a。

    對稱軸與拋物線的交點為拋物線的頂點P。

    特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

    2.拋物線有一個頂點P,坐標為

    P(-b/2a,(4ac-b^2)/4a)

    當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

    3.二次項系數(shù)a決定拋物線的開口方向和大小。

    當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

    |a|越大,則拋物線的開口越小。

    4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

    當a與b同號時(即ab>0),對稱軸在y軸左;

    當a與b異號時(即ab<0),對稱軸在y軸右。

    5.常數(shù)項c決定拋物線與y軸交點。

    拋物線與y軸交于(0,c)

    6.拋物線與x軸交點個數(shù)

    Δ=b^2-4ac>0時,拋物線與x軸有2個交點。

    Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

    Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

    高二數(shù)學重要知識點2

    直線、平面、簡單幾何體:

    1、學會三視圖的分析:

    2、斜二測畫法應(yīng)注意的地方:

    (1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

    (2)平行于x軸的線段長不變,平行于y軸的線段長減半.

    (3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

    3、表(側(cè))面積與體積公式:

    ⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

    ⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

    ⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

    ⑷球體:①表面積:S=;②體積:V=

    4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

    (1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

    (2)平面與平面平行:①線面平行面面平行。

    (3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

    5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

    ⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

    ⑵直線與平面所成的角:直線與射影所成的角

    高二數(shù)學重要知識點3

    復(fù)合函數(shù)定義域

    若函數(shù)y=f(u)的定義域是B,u=g(x)的定義域是A,則復(fù)合函數(shù)y=f[g(x)]的定義域是D={x|x∈A,且g(x)∈B}綜合考慮各部分的x的取值范圍,取他們的交集。

    求函數(shù)的定義域主要應(yīng)考慮以下幾點:

    ⑴當為整式或奇次根式時,R的值域;

    ⑵當為偶次根式時,被開方數(shù)不小于0(即≥0);

    ⑶當為分式時,分母不為0;當分母是偶次根式時,被開方數(shù)大于0;

    ⑷當為指數(shù)式時,對零指數(shù)冪或負整數(shù)指數(shù)冪,底不為0。

    ⑸當是由一些基本函數(shù)通過四則運算結(jié)合而成的,它的定義域應(yīng)是使各部分都有意義的自變量的值組成的集合,即求各部分定義域集合的交集。

    ⑹分段函數(shù)的定義域是各段上自變量的取值集合的并集。

    ⑺由實際問題建立的函數(shù),除了要考慮使解析式有意義外,還要考慮實際意義對自變量的要求

    ⑻對于含參數(shù)字母的函數(shù),求定義域時一般要對字母的取值情況進行分類討論,并要注意函數(shù)的定義域為非空集合。

    ⑼對數(shù)函數(shù)的真數(shù)必須大于零,底數(shù)大于零且不等于1。

    ⑽三角函數(shù)中的切割函數(shù)要注意對角變量的限制。

    復(fù)合函數(shù)常見題型

    (ⅰ)已知f(x)定義域為A,求f[g(x)]的定義域:實質(zhì)是已知g(x)的范圍為A,以此求出x的范圍。

    (ⅱ)已知f[g(x)]定義域為B,求f(x)的定義域:實質(zhì)是已知x的范圍為B,以此求出g(x)的范圍。

    (ⅲ)已知f[g(x)]定義域為C,求f[h(x)]的定義域:實質(zhì)是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然后將其作為h(x)的范圍,以此再求出x的范圍。

    高二數(shù)學重要知識點4

    1.求函數(shù)的單調(diào)性:

    利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

    利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

    反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

    (1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

    (2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

    (3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

    2.求函數(shù)的極值:

    設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

    可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:

    (1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的變化情況:

    (4)檢查f(x)的符號并由表格判斷極值。

    3.求函數(shù)的值與最小值:

    如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值。函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的。

    求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

    (2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值。

    4.解決不等式的有關(guān)問題:

    (1)不等式恒成立問題(絕對不等式問題)可考慮值域。

    f(x)(xA)的值域是[a,b]時,

    不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

    不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

    f(x)(xA)的值域是(a,b)時,

    不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

    (2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

    5.導(dǎo)數(shù)在實際生活中的應(yīng)用:

    實際生活求解(小)值問題,通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導(dǎo)數(shù)來求函數(shù)最值時,一定要注意,極值點的單峰函數(shù),極值點就是最值點,在解題時要加以說明。

    高二數(shù)學重要知識點歸納相關(guān)文章

    高二數(shù)學知識點總結(jié)

    高二數(shù)學知識點總結(jié)(人教版)

    高二數(shù)學常考知識點總結(jié)

    高二數(shù)學會考知識點總結(jié)

    高二數(shù)學知識點總結(jié)歸納

    職業(yè)高中高二數(shù)學知識點

    高二數(shù)學推理知識點大總結(jié)

    高二數(shù)學知識點小結(jié)

    高二數(shù)學知識點總結(jié)選修2

    高二數(shù)學重要知識點歸納

    數(shù)學是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學科,從某種角度看屬于形式科學的一種。下面給大家分享一些高二數(shù)學重要知識點,希望對大家有所幫助。高二數(shù)學重要知識點11.拋物線是軸對稱圖形。對稱軸為
    推薦度:
    點擊下載文檔文檔為doc格式
    650244 亚洲色欲在线播放一区,日韩黄色在线观看无遮挡,九一无码中文字幕久久无码,亚洲中文字幕在线第二页 亚洲国产综合精品中文第一区 2022国产日韩中文无码
    <rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>