<rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>
  • 學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

    高二數(shù)學(xué)必修必拿下知識(shí)點(diǎn)總結(jié)

    時(shí)間: 贊銳0 分享

    在高二階段,學(xué)習(xí)的任務(wù)是打好基礎(chǔ),把各學(xué)科的基礎(chǔ)知識(shí)和技能掌握清楚,在這個(gè)目標(biāo)達(dá)到后,由余力的學(xué)生可以適當(dāng)提高層次,多做些能力題,以提高自己的分析問(wèn)題、解決問(wèn)題和探究問(wèn)題的能力。下面是小編給大家?guī)?lái)的高二數(shù)學(xué)必修必拿下知識(shí)點(diǎn)總結(jié),希望大家能夠喜歡!

    高二數(shù)學(xué)必修必拿下知識(shí)點(diǎn)總結(jié)1

    集合的分類:

    (1)按元素屬性分類,如點(diǎn)集,數(shù)集。

    (2)按元素的個(gè)數(shù)多少,分為有/無(wú)限集

    關(guān)于集合的概念:

    (1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說(shuō),不能確定的對(duì)象就不能構(gòu)成集合,也就是說(shuō),給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。

    (2)互異性:對(duì)于一個(gè)給定的集合,集合中的元素一定是不同的(或說(shuō)是互異的),這就是說(shuō),集合中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

    (3)無(wú)序性:判斷一些對(duì)象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對(duì)象是否有明確的標(biāo)準(zhǔn)。

    集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類:

    含有有限個(gè)元素的集合叫做有限集,含有無(wú)限個(gè)元素的集合叫做無(wú)限集。

    非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

    在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_;

    整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

    有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

    實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無(wú)理數(shù)。其中無(wú)理數(shù)就是無(wú)限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的'點(diǎn)一一對(duì)應(yīng)的數(shù)。)

    1.列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來(lái),寫在花括號(hào)“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}.

    有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。

    例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.

    無(wú)限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.

    2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來(lái)描述。

    例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

    而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

    {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

    大括號(hào)內(nèi)豎線左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

    一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

    它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱描述法。

    例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

    高二數(shù)學(xué)必修必拿下知識(shí)點(diǎn)總結(jié)2

    1.求函數(shù)的單調(diào)性:

    利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

    利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

    反過(guò)來(lái),也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問(wèn)題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

    (1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

    (2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

    (3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

    2.求函數(shù)的極值:

    設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對(duì)x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

    可導(dǎo)函數(shù)的極值,可通過(guò)研究函數(shù)的單調(diào)性求得,基本步驟是:

    (1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的變化情況:

    (4)檢查f(x)的符號(hào)并由表格判斷極值。

    3.求函數(shù)的值與最小值:

    如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對(duì)任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值。函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的。

    求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

    (2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值。

    4.解決不等式的有關(guān)問(wèn)題:

    (1)不等式恒成立問(wèn)題(絕對(duì)不等式問(wèn)題)可考慮值域。

    f(x)(xA)的值域是[a,b]時(shí),

    不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

    不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

    f(x)(xA)的值域是(a,b)時(shí),

    不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

    (2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

    5.導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:

    實(shí)際生活求解(小)值問(wèn)題,通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導(dǎo)數(shù)來(lái)求函數(shù)最值時(shí),一定要注意,極值點(diǎn)的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說(shuō)明。

    高二數(shù)學(xué)必修必拿下知識(shí)點(diǎn)總結(jié)3

    空間兩條直線只有三種位置關(guān)系:平行、相交、異面

    按是否共面可分為兩類:

    (1)共面:平行、相交

    (2)異面:

    異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

    異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。

    兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

    兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

    若從有無(wú)公共點(diǎn)的角度看可分為兩類:

    (1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒(méi)有公共點(diǎn)——平行或異面

    直線和平面的位置關(guān)系:

    直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

    ①直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)

    ②直線和平面相交——有且只有一個(gè)公共點(diǎn)

    直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

    空間向量法(找平面的法向量)

    規(guī)定:a、直線與平面垂直時(shí),所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的角為0°角

    由此得直線和平面所成角的取值范圍為[0°,90°]

    最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角

    三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直

    直線和平面垂直

    直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說(shuō)直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

    直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

    直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒(méi)有公共點(diǎn)

    直線和平面平行的定義:如果一條直線和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線和這個(gè)平面平行。

    直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

    直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

    高二數(shù)學(xué)必修必拿下知識(shí)點(diǎn)總結(jié)相關(guān)文章

    高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

    高二數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)

    高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(人教版)

    高二數(shù)學(xué)考點(diǎn)知識(shí)點(diǎn)總結(jié)復(fù)習(xí)大綱

    高二數(shù)學(xué)上下學(xué)期知識(shí)點(diǎn)復(fù)習(xí)提綱

    高二數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)與學(xué)習(xí)方法總結(jié)

    高二數(shù)學(xué)必修5知識(shí)點(diǎn)總結(jié)

    2017高二數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)

    高二數(shù)學(xué)必修四知識(shí)點(diǎn)總結(jié)

    高二數(shù)學(xué)下學(xué)期知識(shí)點(diǎn)總結(jié)

    高二數(shù)學(xué)必修必拿下知識(shí)點(diǎn)總結(jié)

    在高二階段,學(xué)習(xí)的任務(wù)是打好基礎(chǔ),把各學(xué)科的基礎(chǔ)知識(shí)和技能掌握清楚,在這個(gè)目標(biāo)達(dá)到后,由余力的學(xué)生可以適當(dāng)提高層次,多做些能力題,以提高自己的分析問(wèn)題、解決問(wèn)題和探究問(wèn)題的能力。下面是小編給大家?guī)?lái)的
    推薦度:
    點(diǎn)擊下載文檔文檔為doc格式

    精選文章

    • 高二數(shù)學(xué)復(fù)習(xí)的重要點(diǎn)及知識(shí)點(diǎn)總結(jié)
      高二數(shù)學(xué)復(fù)習(xí)的重要點(diǎn)及知識(shí)點(diǎn)總結(jié)

      只要在學(xué)習(xí)過(guò)程中重視思考問(wèn)題和探究問(wèn)題,你的能力就會(huì)在不知不覺(jué)中得到提高,為高三復(fù)習(xí)階段深化知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)提供基礎(chǔ)。以下是小編給大家整理的

    • 高二數(shù)學(xué)鞏固累積知識(shí)點(diǎn)總結(jié)
      高二數(shù)學(xué)鞏固累積知識(shí)點(diǎn)總結(jié)

      高二時(shí)期的學(xué)習(xí)目標(biāo)主要體現(xiàn)在班級(jí)或年級(jí)里你應(yīng)該達(dá)到或者超過(guò)什么水平,以及你在高中畢業(yè)時(shí)將要達(dá)到什么水平,學(xué)到什么知識(shí)和技能,考上什么類型

    • 高二數(shù)學(xué)必掌握的重點(diǎn)知識(shí)點(diǎn)
      高二數(shù)學(xué)必掌握的重點(diǎn)知識(shí)點(diǎn)

      可以說(shuō),學(xué)習(xí)目標(biāo)是你學(xué)習(xí)的旗幟和方向,學(xué)習(xí)目標(biāo)越高,學(xué)習(xí)動(dòng)力就會(huì)越大,但是一旦學(xué)習(xí)目標(biāo)沒(méi)有達(dá)到,所遭受的打擊也會(huì)越大;以下是小編給大家整理

    • 高二數(shù)學(xué)必修五的必掌握知識(shí)點(diǎn)歸納
      高二數(shù)學(xué)必修五的必掌握知識(shí)點(diǎn)歸納

      雖然學(xué)習(xí)目標(biāo)會(huì)容易達(dá)到,但學(xué)習(xí)成就感也就越弱。因此,你在高二時(shí)期的學(xué)習(xí)目標(biāo),應(yīng)該結(jié)合自己的實(shí)際,采取適當(dāng)?shù)膶W(xué)習(xí)行為,使自己的學(xué)習(xí)目標(biāo)在經(jīng)

    1071231 亚洲色欲在线播放一区,日韩黄色在线观看无遮挡,九一无码中文字幕久久无码,亚洲中文字幕在线第二页 亚洲国产综合精品中文第一区 2022国产日韩中文无码
    <rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>