七年級數(shù)學(xué)知識點梳理
在人類歷史發(fā)展和社會生活中,數(shù)學(xué)發(fā)揮著不可替代的作用,也是在學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具。下面小編為大家?guī)砥吣昙墧?shù)學(xué)知識點梳理,希望對您有所幫助!
七年級數(shù)學(xué)知識點梳理
數(shù)軸
1、數(shù)軸的概念
規(guī)定了原點,正方向,單位長度的直線叫做數(shù)軸。
注意:⑴數(shù)軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數(shù)軸的三要素,三者缺一不
可;⑶同一數(shù)軸上的單位長度要統(tǒng)一;⑷數(shù)軸的三要素都是根據(jù)實際需要規(guī)定的。
2、數(shù)軸上的點與有理數(shù)的關(guān)系
⑴所有的有理數(shù)都可以用數(shù)軸上的點來表示,正有理數(shù)可用原點右邊的點表示,負(fù)有理數(shù)可用原點左邊的點表示,0用原點表示。
⑵所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點不是一一對應(yīng)關(guān)系。(如,數(shù)軸上的點π不是有理數(shù))
3、利用數(shù)軸表示兩數(shù)大小
⑴在數(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;
⑵正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù);
⑶兩個負(fù)數(shù)比較,距離原點遠(yuǎn)的數(shù)比距離原點近的數(shù)小。
4、數(shù)軸上特殊的(小)數(shù)
⑴最小的自然數(shù)是0,無的自然數(shù);
⑵最小的正整數(shù)是1,無的正整數(shù);
⑶的負(fù)整數(shù)是-1,無最小的負(fù)整數(shù)
5、a可以表示什么數(shù)
⑴a>0表示a是正數(shù);反之,a是正數(shù),則a>0;
⑵a<0表示a是負(fù)數(shù);反之,a是負(fù)數(shù),則a<0
⑶a=0表示a是0;反之,a是0,,則a=0
七年級數(shù)學(xué)知識點總結(jié)
1.代數(shù)式:用運算符號"+-×÷……"連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式)
2.列代數(shù)式的幾個注意事項:
(1)數(shù)與字母相乘,或字母與字母相乘通常使用"·"乘,或省略不寫;
(2)數(shù)與數(shù)相乘,仍應(yīng)使用"×"乘,不用"·"乘,也不能省略乘號;
(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;
(4)帶分?jǐn)?shù)與字母相乘時,要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式,如a×應(yīng)寫成a;
(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a.
3.幾個重要的代數(shù)式:(m、n表示整數(shù))
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;
(4)若b>0,則正數(shù)是:a2+b,負(fù)數(shù)是:-a2-b,非負(fù)數(shù)是:a2,非正數(shù)是:-a2.
七年級數(shù)學(xué)知識點歸納
一、方程的有關(guān)概念
1.方程:含有未知數(shù)的等式就叫做方程.
2.一元一次方程:只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.
注:⑴方程的解和解方程是不同的概念,方程的解實質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程.⑵方程的解的檢驗方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論.
二、等式的性質(zhì)
等式的性質(zhì)(1):等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等.
等式的性質(zhì)(1)用式子形式表示為:如果a=b,那么a±c=b±c
等式的性質(zhì)(2):等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,等式的性質(zhì)(2)用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項.
四、去括號法則
1.括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同.
2.括號外的因數(shù)是負(fù)數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變.
五、解方程的一般步驟
1.去分母(方程兩邊同乘各分母的最小公倍數(shù))
2.去括號(按去括號法則和分配律)
3.移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)
4.合并(把方程化成ax=b(a≠0)形式)
5.系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=a(b).
六、用方程思想解決實際問題的一般步驟
1.審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系.
2.設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)
3.列:根據(jù)題意列方程.
4.解:解出所列方程.
5.檢:檢驗所求的解是否符合題意.
6.答:寫出答案(有單位要注明答案)