<rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>
  • 學習啦 > 學習方法 > 高中學習方法 > 高一學習方法 > 高一數(shù)學 > 高一數(shù)學必修1知識點歸納總結(jié)

    高一數(shù)學必修1知識點歸納總結(jié)

    時間: 文娟843 分享

    高一數(shù)學必修1知識點歸納總結(jié)

      高中數(shù)學可以說是高中階段最難的一門課程,要高中數(shù)學必修1知識是非常重要的一個知識點。 下面就讓學習啦小編給大家分享一些高一數(shù)學必修1知識點歸納吧,希望能對你有幫助!

      高一數(shù)學必修1知識點歸納(一)

      一:集合的含義與表示

      1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個整體。

      把研究對象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡稱為集。

      2、集合的中元素的三個特性:

      (1)元素的確定性:集合確定,則一元素是否屬于這個集合是確定的:屬于或不屬于。

      (2)元素的互異性:一個給定集合中的元素是唯一的,不可重復的。

      (3)元素的無序性:集合中元素的位置是可以改變的,并且改變位置不影響集合

      3、集合的表示:{…}

      (1)用大寫字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

      (2)集合的表示方法:列舉法與描述法。

      a、列舉法:將集合中的元素一一列舉出來{a,b,c……}

      b、描述法:

     ?、賲^(qū)間法:將集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合。

      {xR|x-3>2},{x|x-3>2}

     ?、谡Z言描述法:例:{不是直角三角形的三角形}

     ?、踁enn圖:畫出一條封閉的曲線,曲線里面表示集合。

      4、集合的分類:

      (1)有限集:含有有限個元素的集合

      (2)無限集:含有無限個元素的集合

      (3)空集:不含任何元素的集合

      5、元素與集合的關(guān)系:

      (1)元素在集合里,則元素屬于集合,即:aA

      (2)元素不在集合里,則元素不屬于集合,即:a¢A

      注意:常用數(shù)集及其記法:

      非負整數(shù)集(即自然數(shù)集)記作:N

      正整數(shù)集N*或N+

      整數(shù)集Z

      有理數(shù)集Q

      實數(shù)集R

      高一數(shù)學必修1知識點歸納(二)

      1、柱、錐、臺、球的結(jié)構(gòu)特征

      (1)棱柱:

      幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

      (2)棱錐

      幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.

      (3)棱臺:

      幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

      (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

      幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形.

      (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

      幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形.

      (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

      幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形.

      (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

      幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑.

      3、空間幾何體的直觀圖——斜二測畫法

      斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

     ?、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半.

      4、柱體、錐體、臺體的表面積與體積

      (1)幾何體的表面積為幾何體各個面的面積的和.

      (2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

      (3)柱體、錐體、臺體的體積公式

      高一數(shù)學必修1知識點歸納(三)

      (1)直線的傾斜角

      定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

      (2)直線的斜率

     ?、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

      當時,;當時,;當時,不存在.

      ②過兩點的直線的斜率公式:

      注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

      (2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

      (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.

      (3)直線方程

     ?、冱c斜式:直線斜率k,且過點

      注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.

      當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1.

      ②斜截式:,直線斜率為k,直線在y軸上的截距為b

     ?、蹆牲c式:()直線兩點,

     ?、芙鼐厥剑?/p>

      其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為.

     ?、菀话闶剑?A,B不全為0)

      注意:各式的適用范圍特殊的方程如:

      平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

      (5)直線系方程:即具有某一共同性質(zhì)的直線

      (一)平行直線系

      平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

      (二)垂直直線系

      垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

      (三)過定點的直線系

      (ⅰ)斜率為k的直線系:,直線過定點;

      (ⅱ)過兩條直線,的交點的直線系方程為

      (為參數(shù)),其中直線不在直線系中.

      (6)兩直線平行與垂直

      注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.

      (7)兩條直線的交點

      相交

      交點坐標即方程組的一組解.

      方程組無解;方程組有無數(shù)解與重合

      (8)兩點間距離公式:設(shè)是平面直角坐標系中的兩個點

      (9)點到直線距離公式:一點到直線的距離

      (10)兩平行直線距離公式

      在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進行求解.


    猜你喜歡:

    1.高一必修4數(shù)學銳角三角函數(shù)總結(jié)歸納

    2.高一數(shù)學必修1集合知識點總結(jié)

    3.高一數(shù)學必修1各章知識點總結(jié)

    4.高一數(shù)學必修一函數(shù)圖像知識點

    5.高一數(shù)學必修1重點知識

    6.高一數(shù)學必修1知識點總結(jié)

    1431240 亚洲色欲在线播放一区,日韩黄色在线观看无遮挡,九一无码中文字幕久久无码,亚洲中文字幕在线第二页 亚洲国产综合精品中文第一区 2022国产日韩中文无码
    <rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>