<rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>
  • 學習啦>學習方法>通用學習方法>復(fù)習方法>

    初中數(shù)學重點知識歸納整理

    時間: 欣怡1112 分享

      想要把初中數(shù)學學好單靠做題是沒有辦法實現(xiàn)的,要掌握數(shù)學的學習技巧才可以,下面是小編為大家整理的初中數(shù)學重點知識歸納,一起來看看吧!

      初中數(shù)學重點知識歸納

      1. 因式分解:把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉(zhuǎn)化.

      2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.

      3.公因式的確定:系數(shù)的最大公約數(shù)·相同因式的最低次冪.

      注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

      4.因式分解的公式:

      (1)平方差公式: a2-b2=(a+ b)(a- b);

      (2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

      5.因式分解的注意事項:

      (1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;

      (2)使用因式分解公式時要特別注意公式中的字母都具有整體性;

      (3)因式分解的最后結(jié)果要求分解到每一個因式都不能分解為止;

      (4)因式分解的最后結(jié)果要求每一個因式的首項符號為正;

      (5)因式分解的最后結(jié)果要求加以整理;

      (6)因式分解的最后結(jié)果要求相同因式寫成乘方的形式.

      6.因式分解的解題技巧:(1)換位整理,加括號或去括號整理;(2)提負號;

      (3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數(shù)系數(shù);(9)展開部分括號或全部括號;(10)拆項或補項.

      7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對于二次三項式x2+px+q, 有“ x2+px+q是完全平方式

      1.分式:一般地,用A 、B 表示兩個整式,A ÷B 就可以表示為B 的形式,如果AB 中含有字母,式子B 叫做分式.

      ⎧整式有理式⎨⎩分式2.有理式:整式與分式統(tǒng)稱有理式;即 .

      3.對于分式的兩個重要判斷:(1)若分式的分母為零,則分式無意義,反之有意義;(2)若分式的分子為零,而分母不為零,則分式的值為零;注意:若分式的分子為零,而分母也為零,則分式無意義.

      4.分式的基本性質(zhì)與應(yīng)用:

      (1)若分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變;

      (2)注意:在分式中,分子、分母、分式本身的符號,改變其中任何兩個,分式的值不變;

      (3)繁分式化簡時,采用分子分母同乘小分母的最小公倍數(shù)的方法,比較簡單.

      5.分式的約分:把一個分式的分子與分母的公因式約去,叫做分式的約分;注意:分式約分前經(jīng)常需要先因式分解.

      6.最簡分式:一個分式的分子與分母沒有公因式,這個分式叫做最簡分式;注意:分式計算的最后結(jié)果要求化為最簡分式.

      a c ac ⋅=, 7.分式的乘除法法則:b d bd

      n n a b ÷c d =a d ad ⋅=b c bc . a ⎛a ⎫ ⎪=n . (n 為正整數(shù))b 8.分式的乘方:⎝b ⎭.

      9.負整指數(shù)計算法則:

      (1)公式: a0=1(a≠0), a-n=a (a≠0) ;

      (2)正整指數(shù)的運算法則都可用于負整指數(shù)計算;

      ⎛a ⎫ ⎪

      (3)公式:⎝b ⎭-n n n ⎛b ⎫= ⎪⎝a ⎭a -n -m ,b =b

      a m n ;

      (4)公式: (-1)-2=1, (-1)-3=-1.

      10.分式的通分:根據(jù)分式的基本性質(zhì),把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先確定最簡公分母.

      11.最簡公分母的確定:系數(shù)的最小公倍數(shù)·相同因式的最高次冪.

      12.同分母與異分母的分式加減法法則

      13.含有字母系數(shù)的一元一次方程:在方程ax+b=0(a≠0) 中,x 是未知數(shù),a 和b 是用字母表示的已知數(shù),對x 來說,字母a 是x 的系數(shù),叫做字母系數(shù),字母b 是常數(shù)項,我們稱它為含有字母系數(shù)的一元一次方程. 注意:在字母方程中, 一般用a 、b 、c 等表示已知數(shù),用x 、y 、z 等表示未知數(shù).

      14.公式變形:把一個公式從一種形式變換成另一種形式,叫做公式變形;注意:公式變形的本質(zhì)就是解含有字母系數(shù)的方程. 特別要注意:字母方程兩邊同時乘以含字母的代數(shù)式時,一般需要先確認這個代數(shù)式的值不為0.

      15.分式方程:分母里含有未知數(shù)的方程叫做分式方程;注意:以前學過的,分母里不含未知數(shù)的方程是整式方程.

      16.分式方程的增根:在解分式方程時,為了去分母,方程的兩邊同乘以了含有未知數(shù)的代數(shù)式,所以可能產(chǎn)生增根,故分式方程必須驗增根;注意:在解方程時,方程的兩邊一般不要同時除以含未知數(shù)的代數(shù)式,因為可能丟根.

      17.分式方程驗增根的方法:把分式方程求出的根代入最簡公分母(或分式方程的每個分母),若值為零,求出的根是增根,這時原方程無解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的值為零的未知數(shù)的值可能是原方程的增根.

      18.分式方程的應(yīng)用:列分式方程解應(yīng)用題與列整式方程解應(yīng)用題的方法一樣,但需要增加“驗增根”的程序.

      初中數(shù)學考試必備公式

      圓與弧的公式:

      正n邊形的每個內(nèi)角都等于(n-2)×180°/n

      弧長計算公式:L=n兀R/180

      扇形面積公式:S扇形=n兀R^2/360=LR/2

     ?、賰蓤A外離d>R+r②兩圓外切d=R+r③兩圓相交R-rr)④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

      定理:相交兩圓的連心線垂直平分兩圓的公共弦

      定理:把圓分成n(n≥3):⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

      定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

      如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

      因式分解公式:

      公式:a^3+b^3+c^3-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)

      解:a^3+b^3+c^3-3abc

      =(a+b)(a^2-ab+b^2)+c(c^2-3ab)

      =(a+b)(a^2-ab+b^2)+c(c^2-3ab+a^2-ab+b^2-a^2+ab-b^2)

      =(a+b)(a^2-ab+b^2)+c[(c^2-a^2-2ab-b^2)+(a^2-ab+b^2)]

      =(a+b)(a^2-ab+b^2)+c[c^2-(a+b)^2]+c(a^2-ab+b^2)

      =(a+b+c)(a^2-ab+b^2)+c(a+b+c)(c-a-b)

      =(a+b+c)(a^2+b^2+c^2-ab-bc-ac)

      平方差公式:a平方-b平方=(a+b)(a-b)

      完全平方和公式: (a+b)平方=a²+2ab+b²

      完全平方差公式: (a-b)平方=a²-2ab+b²

      兩根式: ax²+bx+c=a[x-(-b+√(b²-4ac))/2a][x-(-b-√(b²-4ac))/2a]兩根式

      立方和公式: a^3+b^3=(a+b)(a²-ab+b²)

      立方差公式:a^3-b^3=(a-b)(a²+ab+b²)

      完全立方公式: a^3±3a²b+3ab²±b^3=(a±b)^3.

      一元二次方程公式與判別式:

      一元二次方程的解 -b+√(b²-4ac)/2a ,-b-√(b²-4ac)/2a

      根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達定理

      判別式

      b²-4ac=0 注:方程有兩個相等的實根

      b²-4ac>0 注:方程有兩個不等的實根

      b²-4ac<0 注:方程沒有實根,有共軛復(fù)數(shù)根

      三角不等式:

      |a+b|≤|a|+|b| |a-b|≤|a|+|b|

      |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a|

      等差數(shù)列公式:

      某些數(shù)列前n項和:

      1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

      2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

      13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

      三角函數(shù)公式--兩角和公式:

      sin(A+B)=sinAcosB+cosAsinB

      sin(A-B)=sinAcosB-sinBcosA

      cos(A+B)=cosAcosB-sinAsinB

      cos(A-B)=cosAcosB+sinAsinB

      tan(A+B)=(tanA+tanB)/(1-tanAtanB)

      tan(A-B)=(tanA-tanB)/(1+tanAtanB)

      三角函數(shù)公式--倍角公式:

      tan2A=2tanA/(1-tan2A)

      cos2a=cos²a-sin²a=2cos²a-1=1-2sin²a

      三角函數(shù)公式--半角公式:

      sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

      cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

      tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

      三角函數(shù)公式--和差化積:

      2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

      2cosAcosB=cos(A+B)-sin(A-B) 2sinAsinB=cos(A+B)-cos(A-B)

      sinA+sinB=2sin((A+B)/2)cos(A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

      tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

      初中數(shù)學學習方法

      一、通讀全卷一是看題量多少,不要漏題;二是選出容易題,準備先作答;三是把自己容易忽略和出錯的事項在題的空白處用鉛筆做個記號

      二、認真審題審題一定要細心.要放慢速度,逐字逐句搞清題意(似曾相識的題目更要注意不背答案),從多角度挖掘隱含條件及條件間內(nèi)在聯(lián)系,為快速解答提供可靠的信息和依據(jù)

      三、由易到難先做容易題,后做難題.遇到難題,要敢于暫時“放棄”,不要浪費太多時間,等把會做的題目解答完后,再回頭集中精力解決它

      四、分段得分數(shù)學解答題有“入手容易,深入難”的特點,第一問較容易,第二、三問難度逐漸加大.因此,解答時應(yīng)注意“分段得分”,步步為營.首先拿下第一問,確保不失分,然后分析第一問是否為第二、三問準備了思維基礎(chǔ)和解題條件,力爭第二問保全分,爭取第三問能搶到分

      五、跳躍解答當不會解(或證)解答題中的前一問,而會解(或證)下一問時,可以直接利用前一問的結(jié)論去解決下一問

      六、逆向分析當用直接法解答或證明某一問題遇到“卡子”時,可以采用分析法.格式如下:假設(shè)“卡子”成立,則···(推出已知的條件和結(jié)論),以上步步可逆,所以“卡子”成立

      七、先思后劃當發(fā)現(xiàn)自己答錯時,不要急于劃掉重寫.這是因為重新改正的答案可能和劃掉的答題無多大區(qū)別

      八、學會聯(lián)想當遇到一時想不起的問題時,不要把注意力集中在一個目標,要換個角度思考,從與題目有關(guān)的知識開始模擬聯(lián)想.如“課本上怎么說的?”,“以前運用這些知識解決過什么問題?”,“是否能特殊化?”,“極限位置怎樣?”等等

      初中數(shù)學解題技巧

      1、配方法

      所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

      2、因式分解法

      因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。

      3、換元法

      換元法是數(shù)學中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

      4、判別式法與韋達定理

      一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。

      韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。

      5、待定系數(shù)法

      在解數(shù)學問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。

      六、構(gòu)造法

      在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構(gòu)造法.運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決.

      七、反證法

      反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法.反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種).用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論.

      八、面積法

      平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果.運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法.

      用歸納法或分析法證明平面幾何題,其困難在添置輔助線.面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果.所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置輔助線,即使需要添置輔助線,也很容易考慮到.

      九、幾何變換法

      在數(shù)學問題的研究中,常常運用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決.中學數(shù)學中所涉及的變換主要是初等變換.有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易.另一方面,也可將變換的觀點滲透到中學數(shù)學教學中.將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認識.

      十、客觀性題的解題方法

      選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型.選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面.

      填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識覆蓋面廣,評卷準確迅速,有利于考查學生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學生猜估答案的情況.

    猜你喜歡:

    1.初中數(shù)學重點知識點

    2.初中數(shù)學基礎(chǔ)知識點總結(jié)

    3.高考必備數(shù)學公式知識點知識歸納

    4.初中數(shù)學知識要點口訣總匯

    5.初中生物必背知識點歸納整理

    3849824 亚洲色欲在线播放一区,日韩黄色在线观看无遮挡,九一无码中文字幕久久无码,亚洲中文字幕在线第二页 亚洲国产综合精品中文第一区 2022国产日韩中文无码
    <rt id="meooy"><dfn id="meooy"></dfn></rt>
  • <center id="meooy"><td id="meooy"></td></center><center id="meooy"><dd id="meooy"></dd></center>
  • <center id="meooy"></center>
    <center id="meooy"><dd id="meooy"></dd></center>
  • 
    <center id="meooy"><s id="meooy"></s></center>
  • <center id="meooy"><cite id="meooy"></cite></center>
    <menu id="meooy"><acronym id="meooy"></acronym></menu>